From 1 - 10 / 70
  • Australia, like the rest of the world, is forward looking and implementing a range of initiatives to support its transition to a lower carbon future. This presentation will focus on emerging energy resource commodities that have placed Australia on its path to a low carbon economy and how Geoscience Australia’s work program supports the industry’s adaptation to the required change in energy mix. Starting with an overview of Australia’s oil & gas exploration history, the talk will highlight the many significant discoveries, the remaining resource potential and the emergence of new energy resource commodities.

  • Characterising earthquake hazard in low seismicity regions is challenging, due to both the inherent lack of data and an incomplete theoretical understanding of the controls on earthquake occurrence away from plate boundaries. In the plate boundary paradigm, elastic rebound theory predicts that cycles of strain accumulation and release will result in regular, or quasiperiodic, recurrence of large earthquakes on individual faults. Analysis of a global compilation of long-term earthquake records shows that this largely holds in plate boundary regions, but begins to break down in intraplate and other low seismicity regions, where more irregular, or aperiodic, earthquake recurrence is observed. In this talk the Otago region of southern New Zealand is used as a case study of a low seismicity region with evidence for aperiodic earthquake recurrence. New paleoearthquake and slip rate data are used to extend the record of faulting back more than 100 ka on two faults, the Hyde and Dunstan faults. These data allow the variability of earthquake rates on these faults to be characterised, with novel Bayesian methods developed to forecast the probability of future earthquakes. Finally, the talk discusses the potential for application of these methods in the Australian context.

  • Earth is the only terrestrial planet in the solar system with continents, and hence understanding their evolution is vital to unravelling what makes Earth special – our liquid oceans, oxygenated atmosphere, and ultimately, life. The continental crust is also host to all our mineable mineral deposits, and hence it has played a key role in the establishment of human civilisation. This link between the crust and human development will be even more prominent through the need for critical metals, as our society transitions toward green technologies. In this talk, we will discuss the link between the time-space evolution of the continental crust and the location of major mineral systems. By using isotopic data from micron-scale zircon crystals, we can map the crustal architectures that control the large-scale localisation of numerous mineral provinces. This work demonstrates the intimate link between the evolution of the continents, the understanding of mineral systems, and ultimately our continued evolution as an industrialised society.

  • From being a poorly understood qualitative mapping tool, airborne electromagnetic (AEM) geophysics has become a mainstay for rapidly imaging the top few hundred metres of buried earth for a variety of geoscientific and environmental purposes. In this talk, we will detail GA’s quest to provide high quality, quantitative interpretation of AEM sounding data. Beginning with a 20-year historical perspective, we will shed light on how persistent focus on AEM technology directly led to AusAEM, the world’s largest (ongoing) AEM survey. We will then discuss how continuing focus on AEM has led to the development of an open source framework written in the Julia language, for subsurface imaging AND uncertainty quantification. This codebase is useful for geophysical methods beyond AEM, such as magnetotellurics and magnetic resonance. Finally, we will dwell on some real life examples using the new codebase and will look to the future of AEM@GA and its untapped potential.

  • As the world’s largest archipelagic country in Earth’s most active tectonic region, Indonesia faces a substantial earthquake and tsunami threat. Understanding this threat is a challenge because of the complex tectonic environment, the paucity of observed data and the limited historical record. Here we combine information from recent studies of the geology of Indonesia’s Banda Sea with Global Positioning System observations of crustal motion and an analysis of historical large earthquakes and tsunamis there. We show that past destructive earthquakes were not caused by the supposed megathrust of the Banda outer arc as previously thought but are due to a vast submarine normal fault system recently discovered along the Banda inner arc. Instead of being generated by coseismic seafloor displacement, we find the tsunamis were more likely caused by earthquake-triggered submarine slumping along the fault’s massive scarp, the Weber Deep. This would make the Banda detachment representative not only as a modern analogue for terranes hyper-extended by slab rollback but also for the generation of earthquakes and tsunamis by a submarine extensional fault system. Our findings suggest that low-angle normal faults in the Banda Sea generate large earthquakes, which in turn can generate tsunamis due to earthquake-triggered slumping.

  • Title: Earth observations for water resources management - Crawford Fund Derek Tribe Address Overview: During the Derek Tribe Address, Dr Lisa-Maria Rebelo will discuss the critical role which new applications and tools, based on earth observation data and ICT technologies, have to play in transforming agricultural systems and ensuring the sustainable management of natural resources under current and future climate conditions. The address will highlight from many examples in Africa and Asia how these tools are currently being used to inform policy and investment decisions. This suite of data tools and databases for improved land and water management, have typically used innovative approaches to address data gaps and provide critically needed information to assess water availability and use. These developments have kept apace and harnessed rapidly developing advances in satellite and other sources of imagery as well as data modeling and analytical techniques. Applicable at global to regional scales, these data tools have included an earth observation-based approach to understanding just how much water is available and where/how this is being used on an operational basis in data scarce areas. This information is invaluable to water and agriculture planners and decision-makers, as they grapple with decreasing water availability and the growing impacts of climate change which is undermining the historical records they have relied on to date, to support their work. In recent advances, climate change scenarios have been used to develop an understanding of future trajectories of water accounts in a river basin and helps to answer the critical question of “Will there be water?” In many agricultural and natural resources management arenas, lack of data is cited as the major impediment to effective and realistic decision-making. Lisa’s drive to innovate approaches to filling that data gap has led to evidence-based informed strategic policy developments and day-to-day management of critical water resources across sectors in many African and Asian countries. Background: Dr Lisa-Maria Rebelo has been awarded the Derek Tribe Award for 2022 by the Crawford Fund. She has been recognized for her work across the African continent, and in South and Southeast Asia, in water productivity, remote sensing, natural resource management, wetland monitoring and assessment, basin water accounting, water productivity. The Derek Tribe Award was inaugurated in 2001 to mark the outstanding contributions of Emeritus Professor Derek Tribe AO OBE FTSE, Foundation Director of the Crawford Fund, to the promotion of international agricultural research. The Derek Tribe Award is made biennially to a citizen of a developing country in recognition of their distinguished contributions to the application of research in agriculture or natural resource management in a developing country or countries. The Crawford Fund is pleased to partner with Geosciences Australia to support Lisa-Maria to visit Australia to share her experiences and to deliver the 2022 Derek Tribe Address. Title: Digital Earth Africa: empowering African led solutions for climate action with Australian innovation - Geoscience Australia Distinguished Lecture Award Overview: Digital Earth Africa (DE Africa) is a flagship investment for the Australian aid program in Africa, deploying world-class Australian innovation at unprecedented scales to deliver development outcomes across the African continent. Since 2019, DE Africa has been delivered through successful African - Australian partnerships, with Australian innovation supporting African leadership to support sustainable development, as well as build resilience and adapt to climate change. By providing access to freely available, decision ready earth observation information, Digital Earth Africa is now supporting a diverse range of governments, communities and industry partners to make more informed decisions on topics of national significance, such as supporting community-led climate action through mangrove conservation in Tanzania, high-level government decision-making on unregulated mining in Ghana and giraffe conservation in Kenya. The new DE Africa Coastline monitoring tool enables users to analyse coastal erosion and growth trends on an annual basis, and is now being used by partners in Senegal to support climate adaptation and mitigation efforts. Leveraging innovation from DE Australia, DE Africa Coastlines exemplifies how global to regional scale earth observation-based tools can successfully empower locally led decision making. Other continent wide, earth observation based services available through DE Africa, include Water Observations from Space, a provisional Crop Extent map and Vegetation Fractional cover. These innovative tools have immense potential to fill key data gaps needed to improve assessments of water use and availability and to support agricultural and natural resources management across the African continent. Background: Cedric will be presenting this talk on behalf of the Digital Earth Africa establishment team as part of Geoscience Australia’s Distinguished Geoscience Australia Lecture series

  • The year 2020 has, for many people, seemed apocalyptic: the unprecedented fires of the summer, damaging storms, locust plagues, the global pandemic and rising geopolitical tensions. The Australian resources sector offers hope for combating war, pestilence, famine and death by providing the raw materials, including critical minerals, for making modern technologies and developing new ones. We use minerals for renewable energy, defence capability, medical diagnostics and treatment, transport, communications, entertainment and agriculture. The Australian Government has assessed the nation's minerals inventory since 1975, recognising that understanding our identified resource potential is the first step to realising the responsible production of the minerals needed for longer, healthier and wealthier human life across the world. In 2020 and beyond, Australia's minerals sector has an opportunity to spearhead the Covid-19 recovery and support the technologies needed for a cleaner, environmentally robust and prosperous planet - stopping the four horsemen in their tracks.

  • Sustainable development and the transition to a clean-energy economy drives ever-increasing demand for base metals, substantially outstripping the discovery rate of new deposits and necessitating dramatic improvements in exploration success. This talk presents the tale of the surprising discovery that 85% of sediment-hosted base metals, including all giant deposits, in Australia and around the world, occur above the transition between thick and thin portions of tectonic plates. It is a story of integrated geoscience, which builds on decades of research in geology, geochemistry and geophysics through a global partnership, which has transformed the search for new exploration frontiers.

  • This talk presents an overview of flood vulnerability research in the Community Safety Branch at Geoscience Australia. It covers work looking at the tangible and intangible costs of floods. Vulnerability models for residential, commercial and industrial buildings are described. The cost-effectiveness of structural mitigation options have been evaluated in recent work undertaken in collaboration with Bushfire and Natural Hazards CRC. The presentation highlights the utility of this research in reducing flood risk in Australian communities.

  • Australia's coastline is exposed to tsunamis generated by large subduction earthquakes in the Indian and Pacific Oceans. While recent events had limited impacts in Australia, future earthquakes could in-principle direct much larger waves to our coast. With only a few hours between earthquake detection and tsunami arrival, prior planning is necessary to guide the emergency response. To this end we need an understanding of tsunami hazards: which coastal areas might be inundated, how deep, and how likely? This talk will discuss recent progress in tsunami inundation hazard assessment at Geoscience Australia. We adopt a probabilistic approach to the problem, which involves modelling hypothetical earthquake-tsunamis from major Indian and Pacific Ocean sources, their effects onshore, and their (uncertain) chance of occurrence. To illuminate the science underlying this we will consider: 1. How well tsunami models can simulate historical tsunamis; 2. Representations of hypothetical tsunamis and their natural variability; 3. New techniques to compute onshore hazards while accounting for uncertain earthquake frequencies.