From 1 - 3 / 3
  • <div>Identifying potential basin areas for future Geological Storage of CO2 (GSC) exploration is essential to support Australia’s transition to a net zero emissions energy future. Geoscience Australia’s AFER Project has completed a play-based assessment of the GSC potential in the Pedirka and western Eromanga basins using regionally extensive aquifers containing saline to slightly brackish formation waters. There are currently no significant anthropogenic CO2 sources or associated storage projects in the assessment area. Understanding the area’s GSC potential does, however, assist in providing options for addressing CCS requirements in the central Australian region, including any future opportunities to remove anthropogenic CO2 using Direct Air Capture and Storage technologies. </div><div><br></div><div>The AFER Project’s assessments are underpinned by new geological insights into the basins and a supporting upscaled 3D geological model. A play-based common risk segment mapping approach has been applied to five potential storage (play) intervals to delineate basin areas with relatively high prospectivity based on four geological risk elements: injectivity, storage effectiveness, containment, and structural complexity. Results from this qualitative component of the assessment highlights a potentially prospective area for future GSC exploration extending across the Northern Territory, South Australia and Queensland. The most prospective interval on a geological probability of success basis is the Namur-Murta play interval. </div><div><br></div><div>Results from the qualitative GSC assessment have been used as a screening tool to delineate areas for quantitative modelling of the range of Estimated Ultimate Storage (EUS) volumes using deterministic and probabilistic methodologies. EUS volumes have been estimated in two model areas representing geological end members in storage interval heterogeneity and potentially prospective areas outside of the extents of current national parks. The EUS potential is high (10’s of gigatonnes) in the two model areas using both deterministic and probabilistic workflows, as expected for a regional assessment using very large pore volumes. Applying a geological probability of success based on injectivity and structural and stratigraphic containment reduces the volumes in the two model areas to a risked best estimate EUS of 13 Gt in the eastern area and a risked best estimate EUS of 2 Gt in the western area. Results from the quantitative assessment suggest that both model areas can support multiple industrial-scale CCS projects injecting 50 Mt CO2 over a 20-year period. However, heterogeneous reservoirs that extend over the eastern assessment area are likely to have greater storage efficiencies and an associated smaller project footprint of 29 km2 using three CO2 injection wells. Relatively homogenous reservoirs elsewhere in the assessment area have lower storage efficiencies due to a lack of intraformational seals within the Algebuckina Sandstone and have an associated larger project area of 49 km2 using three CO2 injection wells. Pressure management requirements are likely to be minimal in both model areas due to the thick and open nature of reservoirs. However, water production rates of up to 16,500 m3/day may be required where local lateral barriers to pressure dissipation occur. &nbsp;&nbsp;&nbsp;</div><div><br></div><div>Results from the AFER Project's GSC assessment demonstrate the value of applying a play-based exploration workflow for a regional-scale energy resource assessment. Estimating the geological probability of success to the presence and repeatability of four mappable risk elements associated with GSC resources allows both relative prospectivity maps and risked EUS volumes to be generated. Prospectivity maps and EUS volumes can in turn be readily updated as new geological data are collected to infill data and knowledge gaps. Geoscience Australia is building a national inventory of GSC resources using this play-based exploration approach, with qualitative assessments now completed under the EFTF and TEGI programs in seven basin areas from central and eastern Australia.&nbsp;</div><div><br></div>

  • Geological storage of CO2 has been identified as an effective technology to reduce greenhouse gas emissions and mitigate global climate change. Deep saline aquifers are recognised as having the highest CO2 storage potential. The Junggar Basin is located in the northern Xinjiang and has extensive distributed deep saline aquifers, which could be the effective sites for CO2 storage. CO2 injectivity and storage capacity were investigated through both static and dynamic modelling on the Cretaceous Donggou Formation aquifer in Zhundong area, Junggar Basin. A static reservoir model was constructed by integrating well data and seismic attributes, and the best estimate of storage capacity (P50) was estimated to be approximately 72 million tonnes using a storage coefficient of 2.4% (P50). Dynamic simulation provided a comprehensive understanding of injectivity, storage capacity and explanation of the different storage mechanisms after CO2 injection. The total injection of CO2 was 31.4 million tonnes with five injection wells. Simulations suggest that at year 300 after injection, 28% of the injected CO2 was stored by residual trapping and 26% of the injected CO2 was dissolved into formation water. The modelling results suggest that there is good potential for large scale CO2 aquifer storage in the Junggar Basin.

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future (EFTF) program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. </div><div><br></div><div>As part of the EFTF Program, Geoscience has completed a multi-disciplinary study to investigate the energy resource potential of selected onshore basins within central Australia under the Australia’s Future Energy Resources (AFER) Project. The AFER Project has adapted the conventional hydrocarbon play-based exploration workflow, developed by the petroleum industry over several decades, to develop a similar approach for assessing unconventional hydrocarbon resource potential and CO2 geological storage prospectivity. Play-based exploration is a method of building and leveraging an understanding of a basin and its sediment-hosted resources by systematically evaluating a series of play intervals using the best available geological data and models. Each play interval represents a regionally significant reservoir/aquifer for one or more resources (e.g. hydrocarbons, groundwater, CO2 storage intervals) often with an associated seal/aquitard. Various ‘risk elements’ that are essential for a resource to exist can be mapped and qualified with a probability of geological success. These risk elements are then spatially integrated (stacked) to generate common risk segment (CRS) or ‘heat’ maps for each play interval that indicate areas of relatively high prospectivity versus relatively low prospectivity. Geological risk elements are evaluated using post-drill analysis of well control points, and geological maps generated from basin studies.</div><div><br></div><div>Common risk segment mapping, supported by post-drill analysis, has been undertaken by the AFER Project using the GIS-Pax Player Software, and assigned a geological probability of success (POS) using a ‘split risking’ system that involves assessing: </div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Pg play, which is the POS that the risk element is effective somewhere within the map segment; </div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Pg repeatability, which is the POS of future repeated effective discoveries for the risk element within the map segment (i.e. the inherent variability or heterogeneity of the risk element); and the </div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Pg overall (Pg play x Pg repeatability). </div><div><br></div><div>This data package provides a spatial data set (CRS maps and post-drill analysis) capturing the AFER project’s assessment of hydrocarbon resources (conventional hydrocarbons, coal seam gas, and shale hydrocarbons) and the CO2 geological storage potential of the Pedirka and western Eromanga basins. The data package includes the following data sets:</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Common risk segment maps for conventional hydrocarbons, unconventional hydrocarbons and CO2 geological storage resources provided in ESRI© ArcGIS file geodatabase format (gdb).</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Common risk segment maps for conventional hydrocarbons, unconventional hydrocarbons and CO2 geological storage resources provided in ESRI© shape format (shp).</div><div>3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Post-drill analysis data provided in ESRI© shape format (shp).</div><div>4.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Metadata forms documenting key information (abstract, data sources, lineage for related groups of map layers, keywords) for each group of related CRS maps and for the post-drill analysis results. </div><div><br></div><div>The product authors wish to acknowledge Tehani Palu (Geoscience Australia) for her internal peer review of the digital data package, Darren Ferdinando (Basin Science Pty Ltd) for his review of the conventional hydrocarbon common risk segment mapping, and Catherine Flowers (Geoscience Australia) for her technical support in developing the GIS products.</div><div><br></div><div><br></div>