From 1 - 10 / 47
  • The magnetotelluric (MT) method is increasingly being applied to a wide variety of geoscience problems. However, the software available for MT data analysis and interpretation is still very limited in comparison to many of the more mature geophysical methods such as the gravity, magnetic or seismic reflection methods. MTPy is an open source Python package to assist with MT data processing, analysis, modelling, visualization and interpretation. It was initiated at the University of Adelaide in 2013 as a means to store and share Python code amongst the MT community (Krieger and Peacock 2014). Here we provide an overview of the software and describe recent developments to MTPy. These include new functionality and a clean up and standardisation of the source code, as well as the addition of an integrated testing suite, documentation, and examples in order to facilitate the use of MT in the wider geophysics community.

  • <p>This dataset contains magnetotelluric data and a 3D inversion model from the 09GA-GA1 deep magnetotelluric transect, collected in Central Australia in 2009. The transect is 350 km long, with data acquired from 18 stations with both broadband and long period instrumentation, and 21 stations with broadband instrumentation only (a total of 39 sites). The resulting station spacing is 10km for the broadband stations, and 20km for stations with both broadband and long period instrumentation. We have reprocessed the broadband data using the Bounded Influence, Remote Reference Processing software (BIRRP), yielding an extended bandwidth of 0.003 to 1300 s and merged these data with the long period data. We have inverted the data using the ModEM 3D inversion code. <p>More details on the data processing, analysis, modelling, and interpretation can be found in the following paper: Kirkby, A. and Duan, J., 2019. Crustal Structure of the Eastern Arunta Region, Central Australia, From Magnetotelluric, Seismic, and Magnetic Data. Journal of Geophysical Research: Solid Earth, 124. <a href="https://doi.org/10.1029/2018JB016223">https://doi.org/10.1029/2018JB016223</a>

  • The AusLAMP-Victoria magnetotelluric survey was a collaborative project between the Geological Survey of Victoria and Geoscience Australia. Long period magnetotelluric data were acquired at 100 sites on a half degree grid spacing across Victoria in the south-east of Australia between December 2013 and September 2014. Some repeated sites were acquired in December 2017. Geoscience Australia managed the project and performed data acquisition, data processing, and data QA/QC. In this record, the field acquisition, data QA/QC, and data processing methodologies are discussed. A separate report will provide information on data analysis, data modelling/inversion, and data interpretation.

  • We present a 3‐D inversion of magnetotelluric data acquired along a 340‐km transect in Central Australia. The results are interpreted with a coincident deep crustal seismic reflection survey and magnetic inversion. The profile crosses three Paleoproterozoic to Mesoproterozoic basement provinces, the Davenport, Aileron, and Warumpi Provinces, which are overlain by remnants of the Neoproterozoic to Cambrian Centralian Surperbasin, the Georgina and Amadeus Basins, and the Irindina Province. The inversion shows conductors near the base of the Irindina Province that connect to moderately conductive pathways from 50‐km depth and to off‐profile conductors at shallower depths. The shallow conductors may reflect anisotropic resistivity and are interpreted as sulfide minerals in fractures and faults near the base of the Irindina Province. Beneath the Amadeus Basin, and in the Aileron Province, there are two conductors associated strong magnetic susceptibilities from inversions, suggesting they are caused by magnetic, conductive minerals such as magnetite or pyrrhotite. Beneath the Davenport Province, the inversion images a conductive layer from ∼15‐ to 40‐km depth that is associated with elevated magnetic susceptibility and high seismic reflectivity. The margins between the different basement provinces from previous seismic interpretations are evident in the resistivity model. The positioning and geometry of the southern margin of the crustal conductor beneath the Davenport Province supports the positioning of the south dipping Atuckera Fault as interpreted on the seismic data. Likewise, the interpreted north dipping margin between the Warumpi and Aileron Province is imaged as a transition from resistive to conductive crust, with a steeply north dipping geometry.

  • The magnetotellurics (MT) method maps the electrical conductivity/resistivity structure of the subsurface, which provides crucial information for mineral exploration. Geoscience Australia has actively applied the method to provide multiscale world-leading datasets to improve the understanding of geology and resource potential. We demonstrate the value of scaled MT data acquisition starting from mapping large-scale conductivity structures in the lithosphere utilising long-period MT datasets through to the resolution of finer scale structures in the crust suitable for camp scale targeting. Integration of data from multiscale surveys provides an effective way to narrow the search space and to identify ‘targets’ of mineral potential in covered terranes. Our work has helped to increase explorers’ investment confidence for new mineral discoveries in greenfield regions.

  • Geoscience Australia in partnership with State and Territory Geological Surveys has applied the magnetotelluric (MT) technique to image Australia’s resistivity structure over the last decade. As part of the Mount Isa Geophysics Initiative program, MT data were collected at 138 sites along a 690 km transect in the South-Eastern Mount Isa. Geoscience Australia undertook data analysis and data inversion to create the most plausible resistivity model. 2D and 3D data modelling were undertaken using well-verified algorithms. The 2D and 3D resistivity models derived from the MT data show some consistent features that are likely to be the real subsurface geology. The near-surface conductive layer resolved by the MT models represents the Carpentaria and Eromanga sedimentary basins reasonably well, in terms of resistivity and thickness. The MT models reveal a predominant crustal-scale conductor, which is interpreted to be part of the Carpentaria Conductivity Anomaly. A number of localised zones of enhanced conductivity are also detected within the crust. These conductors correspond to known major faults identified by seismic and geological data. One of the faults, i.e. the Cork Fault, marks the tectonic boundary between the Mount Isa terrane and the Thomson Orogen. The geometries of these conductive bodies suggest that the enhanced conductivity may be caused by deformation or mineralisation associated with faulting. Some of these faults linking into the middle and lower crust are considered as the primary factors in the partitioning of mineralisation in the region. Results from the magnetotelluric data provide new insights into the understanding of the complex crustal structure where little geological history is known.

  • The footprint of a mineral system is potentially detectable at a range of scales and lithospheric depths, reflecting the size and distribution of its components. Magnetotellurics is one of a few techniques that can provide multiscale datasets to understand mineral systems. The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric data on a half-degree grid spacing (about 55 km) across Australia. This project aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent. We have used AusLAMP as a first-order reconnaissance survey to resolve large-scale lithospheric architecture for mapping areas of mineral potential in Australia. AusLAMP results show a remarkable connection between conductive anomalies and giant mineral deposits in known highly endowed mineral provinces. Similar conductive features are mapped in greenfield areas where mineralisation has not been previously recognised. In these areas we can then undertake higher-resolution infill magnetotelluric surveys to refine the geometry of major structures, and to investigate if deep conductive structures are connected to the near surface by crustal-scale fluid-flow pathways. This presentation summarises the results from a 3D resistivity model derived from AusLAMP data in Northern Australia (Figure 1). This model reveals a broad conductivity anomaly in the lower crust and upper mantle that extends beneath an undercover exploration frontier between the producing Tennant Creek region and the prospective Murphy Province to the northeast. This anomaly potentially represents a fertile source region for mineral systems. A subsequent higher-resolution infill magnetotelluric survey revealed two prominent conductors within the crust (Figure 2) whose combined responses produced the lithospheric-scale conductivity anomaly mapped in the AusLAMP model. Integration of the conductivity structure with deep seismic reflection data revealed a favourable crustal architecture linking the lower, fertile source regions with potential depositional sites in the upper crust. Integration with other geophysical and geochronological datasets suggests high prospectivity for major mineral deposits in the vicinity of major faults. In addition to these insights, interpretation of high-frequency magnetotelluric data helps to characterise cover and assist with selecting targets for stratigraphic drilling. This study demonstrates that the integration of geophysical data from multiscale surveys is an effective approach to scale reduction during mineral exploration in covered terranes. The success of this data integration and scale reduction approach is demonstrated by the uptake of over 11,000 square kilometres of new exploration tenements in the previously under-explored East Tennant region of northern Australia. This abstract was submitted to and presented at the 26th World Mining Congress (WMC) 2023 (https://wmc2023.org/)

  • We have used Audio-frequency Magnetotelluric (AMT) data to characterise cover and to estimate depth to basement for a number of regional drilling programs in geologically different regions across Australia. We applied deterministic and probabilistic inversion methods to derive 2D and 1D resistivity models. We have also used borehole results to ground-truth and validate the resistivity models and to improve geophysical interpretations. In the East Tennant region, borehole lithology and wireline logging demonstrates that the modelled AMT response is due to bulk conductivity/resistivity of the cover and basement rocks. The groundwater in the region is suitable for cattle drinking water, thus is of low overall salinity and is regarded as having little effect on bulk conductivity. Therefore the bulk conductivity/resistivity is due primarily to bulk mineralogy and the success of using the AMT models to predict cover thickness is shown to be dependent on whether the bulk mineralogy of cover and basement rocks are sufficiently different to provide a detectable conductivity contrast, and the sensitivity of the AMT response with increasing depth. In areas where there is sufficient difference in bulk mineralogy and where the stratigraphy is simple, AMT models predict the cover thickness with great certainty, particularly closer to the Earth’s surface. However, the geological system is not always simple, and we have provided examples where the AMT models provide an ambiguous response that needs to be interpreted with other data (e.g. drilling, wireline logging, potential field modelling) to validate the AMT model result. Overall, we conclude that the application of the method has been validated and the results can compare favourably with borehole stratigraphy logs once geological (i.e. bulk mineralogical) complexity is understood. This demonstrates that the method is capable of identifying major stratigraphic structures with resistivity contrasts. Our results have assisted with the planning of regional drilling programs and have helped to reduce the uncertainty and risk associated with intersecting targeted stratigraphic units in covered terrains. <b>Citation:</b> Jiang, W., Roach, I. C., Doublier, M. P., Duan, J., Schofield, A., Clark, A., & Brodie, R. C. Application of audio-frequency magnetotelluric data to cover characterisation – validation against borehole petrophysics in the East Tennant region, Northern Australia. <i>Exploration Geophysics</i>, 1-20, DOI: 10.1080/08123985.2023.2246492

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New data have recently been collected in New South Wales under a National Collaborative Framework agreement between Geoscience Australia and the Geological Survey of New South Wales. This data release contains a preferred resistivity model and associated inversion files for southeast Australia using data from AusLAMP Victoria (Duan & Kyi, 2018), far west NSW (Robertson et al. 2016) and from the rest of New South Wales up to August 2019 (Kyi et al 2020). The original work behind this model can be cited through the following paper which contains discussion on model development and its significance for tectonic evolution and metallogenic potential: Kirkby, A., Musgrave, R.J., Czarnota, K., Doublier, M.P., Duan, J., Cayley, R.A., Kyi, D., 2020. Lithospheric architecture of a Phanerozoic orogen from magnetotellurics: AusLAMP in the Tasmanides, southeast Australia. Tectonophysics, v. 793, 228560.

  • Geoscience Australia’s geomagnetic observatory network covers one-eighth of the Earth. The first Australian geomagnetic observatory was established in Hobart in 1840. This almost continuous 180-year period of magnetic-field monitoring provides an invaluable dataset for scientific research. Geomagnetic storms induce electric currents in the Earth that feed into power lines through substation neutral earthing, causing instabilities and sometimes blackouts in electricity transmission systems. Power outages to business, financial and industrial centres cause major disruption and potentially billions of dollars of economic losses. The intensity of geomagnetically induced currents is closely associated with geological structure. We modelled peak geoelectric field values induced by the 1989 Québec storm for south-eastern Australian states using a scenario analysis. Modelling shows the 3D subsurface geology had a significant impact on the magnitude of induced geoelectric fields, with more than three orders of magnitude difference across conductive basins to resistive cratonic regions in south-eastern Australia. We also estimated geoelectrically induced voltages in the Australian high-voltage power transmission lines by using the scenario analysis results. The geoelectrically induced voltages may exhibit local maxima in the transmission lines at differing times during the course of a magnetic storm depending on the line’s spatial orientation and length with respect to the time-varying inducing field. Real-time forecasting of geomagnetic hazards using Geoscience Australia’s geomagnetic observatory network and magnetotelluric data from the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) helps develop national strategies and risk assessment procedures to mitigate space weather hazard. This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)