data standards
Type of resources
Keywords
Publication year
Topics
-
OZCHEM is AGSO's national whole-rock geochemical database (previously known as ROCKCHEM). This documentation explains the database structure and includes definitions of the database tables and columns (attributes). It is provided with all purchases of OZCHEM data, but can also be purchased separately. The documentation includes summaries and highlights of all the regional data sets that comprise OZCHEM.
-
Marine science is expensive. Duplication of research activities is potentially money wasted. Not being aware of other marine science studies could question the validity of findings made in single-discipline studies. A simple means of discovery is needed. The development of Earth Browsers (principally Google Earth) and KML (Keyhole Markup Language) files offer a possible solution. Google Earth is easy to use, and KML files are relatively simple, ASCII, XML-tagged files that can encode locations (points, lines and polygons), relevant metadata for presentation in descriptive 'balloons', and links to digital sources (data, publications, web-pages, etc). A suite of studies will be presented showing how information relating to investigations at a point (e.g. observation platform), along a line (e.g. ship borne survey) or over a region (e.g. satellite imagery) can be presented in a small (10 Kbyte) file. The information will cover a range of widely used data types including seismic data, underwater video, image files, documents and spreadsheets. All will be sourced directly from the web and can be downloaded from within the browser to one's desktop for analysis with appropriate applications. To be useful, this methodology requires data and metadata to be properly managed; and a degree of cooperation between major marine science organizations which could become 'sponsors' of the principal marine science disciplines (i.e oceanography, marine biology, geoscience). This need not be a complex task in many cases. The partitioning of the sciences is not important, so long as the information is being managed effectively and their existence is widely advertised. KML files provide a simple way of achieving this. The various discipline-based KML files could be hosted by an umbrella organization such as the AODCJF, enabling it to become a 'one-stop-shop' for marine science data.
-
This extended abstract describes the 1:1 million scale Surface Geology of Northern Territory digital dataset and advances in digital data delivery via WMS/WFS services and the GeoSciML geological data model.
-
We propose an automated capture system that follows the fundamental scientific methodology. It starts with the instrument that captures the data, uses web services to make standardised data reduction programs more widely accessible, and finally uses internationally agreed data transfer standards to make geochemical data seamlessly accessible online from a series of internationally distributed certified repositories. The Australian National Data Service (http://www.ands.org.au/) is funding a range of data capture solutions to ensure that the data creation and data capture phases of research are fully integrated to enable effective ingestion into research data and metadata stores at the institution or elsewhere. They are developing a national discovery service that enables access to data in institutional stores with rich context. No data is stored in this system, only metadata with pointers back to the original data. This enables researchers to keep their own data but also enables access to many repositories at once. Such a system will require standardisation at all phases of the process of analytical geochemistry. The geochemistry community needs to work together to develop standards for attributes as the data are collected from the instrument, to develop more standardised processing of the raw data and to agree on what is required for publishing. An online-collaborative workspace such as this would be ideal for geochemical data and the provision of standardised, open source software would greatly enhance the persistence of individual geochemistry data collections and facilitate reuse and repurposing. This conforms to the guidelines from Geoinformatics for Geochemistry (http://www.geoinfogeochem.org/) which requires metadata on how the samples were analysed.
-
Geoscience data standards as a field of research may come as a surprise to many geoscientists, who probably think of it as a dull peripheral issue, of little relevance to their domain. However, the subject is gaining rapidly in importance as the information revolution begins to take hold, as ultimately billions of dollars worth of information are at stake. In this article we take a look at what has happened recently in this field, where we think it is heading, and AGSO's role in national geoscience standards.
-
Quarterly column on issues in Australian stratigraphy
-
This documentation manual for the national mineral deposits dataset provides the necessary description of AGSO's mineral deposit database (OZMIN) - its structure, the main data and authority tables used by OZMIN, database table definitions, details on the Microsoft Access version of the database and a listing of those deposits in the dataset.
-
OZCHEM is Geoscience Australia's national whole-rock geochemical database. This release of OZCHEM contains approximately 32000 analyses of rocks from many regions of Australia. Each analysis includes a geographic location and a geological description, which includes the host stratigraphic unit, where known, and the lithology. Most samples have been collected by Geoscience Australia's field parties. OZCHEM is stored in an ORACLE relational database and is available in comma-delimited flat ASCII, Microsoft Access, Arcview and Mapinfo formats. The data set is also bundled with detailed documentation which explains the database structure and includes definitions of the database tables and columns (attributes). The documentation includes summaries and highlights of all the regional datasets that comprise OZCHEM and is available in both acrobat reader and Microsoft word document formats.
-
GeoSciML is the international standard for transfer of digital geological maps and relational database data. GeoSciML was developed over the past decade by the IUGS Commission for the Management and Application of Geoscience Information (CGI), and was adopted as an Open Geospatial Consortium (OGC) standard in June 2016. Ratification as an official OGC standard marked a coming of age for GeoSciML - it now meets the highest standards for documentation and current best practice for interoperable data transfer. GeoSciML is the preferred standard for geoscience data sharing initiatives worldwide, such as OneGeology, the European INSPIRE directive, the Australian Geoscience Portal, and the US Geoscience Information Network (USGIN). GeoSciML is also used by OGC's GroundwaterML data standard [1] and CGI's EarthResourceML standard [2]. Development of GeoSciML version 4 learnt considerably from user experiences with version 3.2, which was released in 2013 [3]. Although the GeoSciML v3 data model was conceptually sound, its XML schema implementation was considered overly complex for the general user. Version 4 developments focussed strongly on designing simpler XML schemas that allow data providers and users to interact with data at various levels of complexity. As a result, GeoSciML v4 provides three levels of user experience - 1. simple map portrayal, 2. GeoSciML-Basic for common age and lithology data for geological features, and 3. GeoSciML-Extended, which extends GeoSciML-Basic to deliver more detailed and complex relational data. Similar to GeoSciML v3, additional GeoSciML v4 schemas also extend the ISO Observations & Measurements standard to cover geological boreholes, sampling, and analytical measurements. The separate levels of GeoSciML also make it easier for software vendors to develop capabilities to consume relatively simple GeoSciML data without having to deal with the full range of complex GeoSciML schemas. Previously mandatory elements of GeoSciML, that were found to be overly taxing on users in version 3, are now optional in version 4. GeoSciML v4 comes with Schematron validation scripts which can be used by user communities to create profiles of GeoSciML to suit their particular community needs. For example, the European INSPIRE community has developed Schematrons for web service validation which require its users to populate otherwise-optional GeoSciML-Basic elements, and to use particular community vocabularies for geoscience terminology. Online assistance for data providers to use GeoSciML is now better than ever, with user communities such as OneGeology, INSPIRE, and USGIN providing user guides explaining how to create simple and complex GeoSciML web services. CGI also provides a range of standard vocabularies that can be used to populate GeoSciML data services. Full documentation and user guides are at www.geosciml.org.
-
As interpretations of sequence stratigraphy are published in increasing numbers in the petroleum exploration literature, the potential for confusion also increases because there are no rules for the classification or naming of the identified sequences. At present it is difficult to apply databases and geographic information systems to sequence stratigraphy, particularly when organisations with different outlooks and approaches attempt to collaborate and merge their databases. Despite sequence stratigraphic concepts having been in the literature for over two decades, no scheme for standardisation has achieved consensus in the geoscientific community, either within Australia or internationally. Three areas in particular need to be agreed on: (1) how sequence units should be defined; (2) the hierarchy of those units, and on what basis; and (3) a standard scheme for naming units. The two basic ways of subdividing a succession into sequence units, the Vail-Exxon and Galloway methods, both rely on the enclosing boundaries being defined first. Various hierarchies of units have been proposed, in which there is often a clear desire to link the scale of sequence units to phases of geological evolution or stratal boundaries of different orders. In addition, most workers use informal names, but formal names are becoming more common. Consequently, it is essential that workable national guidelines be developed to ensure that communication and computer compatibility are not impeded.