From 1 - 10 / 35
  • The Australian Resource Reviews are periodic national assessments of individual mineral commodities. The reviews include evaluations of short-term and long-term trends for each mineral resource, world rankings, production data, significant exploration results and an overview of mining industry developments.

  • <div>These videos provide tutorials on how to use the Geoscience Australia Data portal in the classroom. They include a guide for basic navigation, how to load 2D map data sets (elevation, surface geology and critical minerals) as well as accessing a 3D data model (earthquakes).&nbsp;Additionally, they demonstrate how to directly compare multiple data and how to share collated data through a shareable link.</div><div>Videos included:</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Introduction to using the Geoscience Australia Data Portal (2:15)</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;How to access elevation, surface geology and critical minerals data in the Geoscience Australia Data Portal (4:26)</div><div>- How to view the global distribution of earthquakes using the Geoscience Australia Data Portal (2:51)</div><div><br></div><div>These videos are suitable for use by secondary students and adults.</div>

  • <div>Maps showing the potential for carbonatite-related rare earth element (REE) mineral systems in Australia. Each of the mineral potential maps is a synthesis of three or four component layers. Model 1 integrates three components: sources of metals, energy drivers, and lithospheric architecture. Model 2 integrates four components: sources of metals, energy drivers, lithospheric architecture, and ore deposition. Both models use a hybrid data-driven and knowledge driven methodology to produce the final mineral potential map for the mineral system. An uncertainty map is provided in conjunction with the mineral potential map for Model 2 that represents the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. An assessment criteria table is provided and contains information on the map creation.</div>

  • This database contains geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, compiled by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data was compiled from a number of publicly-available sources, including federal and provincial government mineral deposit and geochemistry databases, and the ore samples normalised to average crustal abundance (OSNACA) database compiled by the Centre for Exploration Targeting at the University of Western Australia. Geochemical data cover the majority of the periodic table, with metadata on analytical methods and detection limits. Where available, sample descriptions include lithology, mineralogy, and host stratigraphic units. Mineral deposits are classified according to the CMMI mineral deposit classification scheme (Hofstra et al., 2021). Location information includes deposit or prospect name, and sampling location (i.e., mine, field site, or borehole collar). This dataset will be updated periodically as more data become available. Geoscience Australia: D Champion, O Raymond, D Huston, M Sexton, E Bastrakov, S van der Wielen, G Butcher, S Hawkins, J Lane, K Czarnota, I Schroder, S McAlpine, A Britt Geological Survey of Canada: K Lauzière, C Lawley, M Gadd, J-L Pilote, A Haji Egeh, F Létourneau United States Geological Survey: M Granitto, A Hofstra, D Kreiner, P Emsbo, K Kelley, B Wang, G Case, G Graham Geological Survey of Queensland: V Lisitsin

  • <div>This record one in a series of reports detailing the geochemical and mineralogical results of sampling collected at mine waste sites across Australia as part of Geoscience Australia's Exploring for the Future program. It presents new data and information regarding the tenor rare earth elements, ore commodities (lead, zinc and silver) and other trace metals, at the Cannington silver and lead mine located in Queensland’s Northwest Minerals Province.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>

  • Critical minerals are pivotal to human society in industrialised and developing economies. Many critical minerals are irreplaceable inputs for technological and industrial advancements, especially renewable energy systems, electric vehicles, rechargeable batteries, consumer electronics, telecommunications, specialty alloys, and defence technologies. Critical minerals are metals, non-metals and mineral compounds that are economically important and are also subject to high risks of supply. “Criticality” is a subjective concept; countries develop their own lists of critical minerals based on the relative importance of particular minerals to their industrial needs and strategic assessment of supply risks. Lists are reviewed and changed over time. Commonly appearing on lists of high criticality are: antimony, barite, beryllium, bismuth, cesium, chromium, cobalt, germanium, indium, lithium, manganese, niobium, platinum-group elements (PGE), potash, rare earth elements (REE), rhenium, rubidium, scandium, strontium, tantalum, tellurium, rhenium, tungsten, and vanadium. The supply of critical minerals is an area of great growth potential, based on increasing technological demands and uses at a global level. Australia is one of the world’s principal producers of several key major mineral commodities (e.g. bauxite, coal, copper, lead, gold, ilmenite, iron ore, nickel, rutile, zircon, and zinc). Although some critical minerals are mined as primary products (e.g. REE, lithium, potash), many critical minerals are extracted as companion products from base or precious metal production (e.g. PGE from nickel sulfide ores, or indium from zinc concentrate). Considering that Australia has leading expertise in mining and metallurgical processing as well as extensive mineral resources likely to contain critical minerals, there is a clear opportunity for Australia to develop into a major, transparent and reliable supplier of critical minerals for the global economy. Based on a conservative estimate, Australia could add approximately $9.4 billion of value to the nation's mineral and metal production (currently valued at $112.2 billion, or an increase of about 8%) through the production of four critical commodities (hafnium, niobium, rare earth elements and scandium) from existing mines and favourable deposits. Full realisation of this and potentially even greater production is significantly affected by other factors, including: insufficient knowledge of critical minerals in Australian deposits and their behaviour during metallurgical processing due to limited reporting by industry; few geological studies dedicated to assessing and facilitating the discovery of critical mineral resources in Australia; the need for new mining technology and services to economically extract critical minerals; gaps in capabilities of domestic smelters/refineries to process critical minerals. These issues require further research and investigation in order for Australia to maximise its position in global critical minerals markets. This study was commissioned by Geoscience Australia in collaboration with RMIT and Monash University to summarise key aspects of the current state of critical minerals in Australia. The report covers: global demand and supply; Australia’s resource potential; an overview of ‘criticality’ assessment methods; estimates of potential economic value; and future research needs for critical minerals in Australia.

  • <div>The production of rare earth elements (REEs) is critical to the global transition to a low carbon economy. Carbonatites represent a significant source of REEs, both domestically within Australia, as well as globally. Given their strategic importance for the Australian economy, a national mineral potential assessment has been undertaken as part of the Exploring for the Future program at Geoscience Australia to evaluate the potential for carbonatite-related REE (CREE) mineral systems. Rather than aiming to identify individual carbonatites and/or CREE deposits, the focus of the mineral potential assessment is to delineate prospective belts or districts within Australia that indicate the presence of favourable criteria, particularly in terms of lithospheric architecture, that may lead to the formation of a CREE mineral system.</div><div><br></div><div>This study demonstrates how national-scale multidisciplinary precompetitive geoscience datasets can be integrated using a hybrid methodology that incorporates robust statistical analysis with mineral systems expertise to predictively map areas that have a higher geological potential for the formation of CREE mineral systems and effectively reduce the exploration search space. Statistical evaluation of the relationship between different mappable criteria that represent spatial proxies for mineral system processes and known carbonatites and CREE deposits has been undertaken to test previously published hypotheses on how to target CREE mineral systems at a broad-scale. The results confirm the relevance of most criteria in the Australian context, while several new criteria such as distance to large igneous province margins and distance to magnetic worms have also been shown to have a strong correlation with known carbonatites and CREE deposits. Using a hybrid knowledge- and data-driven mineral potential mapping approach, the mineral potential map predicts the location of known carbonatite and CREE deposits, while also demonstrating additional areas of high prospectivity in regions with no previously identified carbonatites or CREE mineralisation.</div> Presented at the AusIMM Critical Minerals Conference 2023.

  • The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset (<a href="http://dx.doi.org/10.11636/Record.2011.020">http://dx.doi.org/10.11636/Record.2011.020</a>). The present dataset provides additional geochemical data for Li, Be, Cs, and Rb acquired as part of the Australian Government-funded Exploring for the Future (EFTF) program and in support of the Australian Government’s 2023-2030 Critical Minerals Strategy. The dataset fills a knowledge gap about Li distribution in Australia over areas dominated by transported regolith. The main ‘total’ element analysis method deployed for NGSA was based on making a fused bead using lithium-borate flux for XRF then ICP-MS analysis. Consequently, the samples could not be meaningfully analysed for Li. All 1315 NGSA milled coarse-fraction (<2 mm) top (“TOS”) catchment outlet sediment samples, taken from 0 to 10 cm depth in floodplain landforms, were analysed in the current project following the digestion method that provides near-total concentrations of Li, Be, Cs, and Rb. The samples were analysed by the commercial laboratory analysis service provider Bureau Veritas in Perth using low-level mixed acid (a mixture of nitric, perchloric and hydrofluoric acids) digestion with elements determined by ICP-MS (Bureau Veritas methods MA110 and MA112). The data are reported in the same format as the NGSA dataset, allowing for seamless integration with previously released NGSA data. Further details on the QA/QC procedures as well as data interpretation will be reported elsewhere. This data release also includes four continental-scale geochemical maps for Li, Be, Cs, and Rb built from these analytical data. This dataset, in conjunction with previous data published by NGSA, will be of use to mineral exploration and prospectivity modelling around Australia by providing geochemical baselines for Li, Be, Cs, and Rb, as well as identifying regions of anomalism. Additionally, these data also have relevance to other applications in earth and environmental sciences.

  • <div>The study utilised Geoscience Australia’s vast data collection of mineral occurrences to identify the range of historical discoveries within the Officer-Musgrave, Darling-Curnamona - Delameian and Barkly - Isa - Georgetown Deep Dive areas. A literature review shed light on exploration discovery methods, commodity grades, exploration histories and deposit types. Many critical mineral occurrences were overlooked or ignored in the past, as the commodity discovered was not of interest or value at the time, or grades were regarded as sub-economic. However, with modern methods of mining, ore treatment techniques and increased demand, reassessment could now provide new opportunities.</div>

  • <div>Maps showing the potential for iron oxide copper-gold (IOCG) mineral systems in Australia. Each of the mineral potential maps is a synthesis of four component layers (source of metals, fluids and ligands; energy sources and fluid flow drivers; fluid flow pathways and architecture; and ore depositional gradients). The model uses a hybrid data-driven and knowledge driven methodology to produce the final mineral potential map for the mineral system. An uncertainty map is provided in conjunction with the mineral potential maps that represents the availability of data coverage over Australia for the selected combination of input maps. Uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. The input maps and mineral deposits and occurrences used to generate the mineral potential map are provided along with an assessment criteria table which contains information on the map creation.</div>