From 1 - 10 / 32
  • <div>This report presents the results of petrographic and X-ray Diffraction analysis undertaken by Microanalysis Australia under contract to Geoscience Australia, on rock samples collected from selected drill holes across the Proterozoic Birrindudu Basin and underlying metamorphic basement.</div><div><br></div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#FI230004a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 149178)</div>

  • <div>Previous work by the SA government and CSIRO[i] highlighted the value of integrating AEM data with other geological and hydrogeological data to model palaeovalley groundwater systems and develop regional hydrogeological conceptualisations. This allows better-informed water supply decisions and management for communities in remote parts of Australia where these systems provide the only available and long-term water resource. The Exploring for the Future Musgrave Palaeovalley module seeks to apply similar work flows across the western Musgrave Province and adjacent Officer and Canning basins.</div><div>Open file mineral exploration AEM data from 11 surveys in WA and SA flown between 2009 and 2012 were re-processed and inverted to produce conductivity models and a suite of derived datasets. Geoscience Australia’s Layered-Earth-Inversion was used as a single standard processing and inversion method to improve continuity and data quality.</div><div>These legacy AEM data, originally for mineral exploration, have been incorporated with DEM-derived landscape attributes, previous palaeovalley mapping and available bore lithologies to model palaeovalley base surfaces. This presentation will provide an example from four blocks of AEM data to show how repurposing data from mineral exploration, public bore data and landscape analysis can be used to identify palaeovalley systems which provide critical water supplies for remote and regional communities and industry[ii].</div><div>This approach can be used to model palaeovalley systems from a range of geoscientific and other datasets. The Exploring for the Future Musgrave Palaeovalley module has acquired ~23,000 line km of AEM across parts of WA and the NT at line spacings of 1 and 5 km. This new precompetitive data will be used to model palaeovalley system geometry and integrate with new and existing AEM, drilling, landscape, groundwater chemistry and surface geophysics data to test hydrogeological conceptualisations of these groundwater systems.</div><div><br></div><div><br></div><div> [i] Costar, A., Love, A., Krapf, C., Keppel, M., Munday, T., Inverarity, K., Wallis, I. &&nbsp;Sørensen, C. (2019). Hidden water in remote areas – using innovative exploration to uncover the past in the Anangu Pitjantjatjara Yankunytjatjara Lands. MESA Journal 90(2), 23 - 35 pp.</div><div>Krapf, C., Costar, A., Stoian, L., Keppel, M., Gordon, G., Inverarity, K., Love, A. &&nbsp;Munday, T. (2019). A sniff of the ocean in the Miocene at the foothills of the Musgrave Ranges - unravelling the evolution of the Lindsay East Palaeovalley. MESA Journal 90(2), 4 - 22 pp.</div><div>Krapf, C. B. E., Costar, A., Munday, T., Irvine, J. A. & Ibrahimi, T., 2020. Palaeovalley map of the Anangu Pitjantjatjara Yankunytjatjara Lands (1st edition), 1:500 000 scale. Goyder Institute for Water Research, Geological Survey of South Australia, CSIRO.</div><div>https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wci/Record?r=0&m=1&w=catno=2042122. </div><div>Munday, T., Taylor, A., Raiber, M., Sørensen, C., Peeters, L. J. M., Krapf, C., Cui, T., Cahill, K., Flinchum, B., Smolanko, N., Martinez, J., Ibrahimi, T. &&nbsp;Gilfedder, M., 2020a. Integrated regional hydrogeophysical conceptualisation of the Musgrave Province, South Australia, Goyder Institute for Water Research Technical Report Series 20/04, Goyder Institute for Water Research, Adelaide.</div><div>Munday, T., Gilfedder, M., Costar, A., Blaikie, T., Cahill, K., Cui, T., Davis, A., Deng, Z., Flinchum, B., Gao, L., Gogoll, M., Gordon, G., Ibrahimi, T., Inverarity, K., Irvine, J., Janardhanan, Sreekanth, Jiang, Z., Keppel, M., Krapf, C., Lane, T., Love, A., Macnae, J., Mariethoz, G., Martinez, J., Pagendam, D., Peeters, L., Pickett, T., Robinson, N., Siade, A., Smolanko, N., Sorensen, C., Stoian, L., Taylor, A., Visser, G., Wallis, I. &&nbsp;Xie, Y., 2020b. Facilitating Long-term Outback Water Solutions (G-Flows Stage 3): Final Summary Report. Goyder Institute for Water Research, Adelaide, http://hdl.handle.net/102.100.100/376125?index=1. </div><div>[ii] Symington, N. J., Ley-Cooper, Y. A. &&nbsp;Smith, M. L., 2022. West Musgrave AEM conductivity models and data release. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/146278.&nbsp;</div> This Abstract was submitted/presented to the 2022 Sub 22 Conference 28-30 November (http://sub22.w.tas.currinda.com/)

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>

  • This report presents groundwater level information collected during Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project was conducted as part of Exploring for the Future (EFTF), an Australian Government funded geoscience data and information acquisition program. The eight-year, $225 million program aims to deliver new geoscience data and knowledge to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources.</div><div>Groundwater level data was collected during two hydrogeochemical surveys undertaken in March and May 2023 based around the remote communities of Warburton, Kaltukatjara, Wanarn, Blackstone and Jameson in Western Australia and the Northern Territory. Sixteen bores were measured for their groundwater levels. The results are contained herein and within the attached CSV file.

  • <div>The recent Musgrave Palaeovalley Project set out to map the extent and characterise the palaeovalley architecture of several of these Cenozoic features that overlie the Musgrave Province in central Australia. To effectively model the palaeovalley architecture of these features we collected approximately 20 000 line km of new Airborne Electromagnetics (AEM) and combined it with an array of existing AEM datasets, including AusAEM and high resolution mineral exploration surveys. These older surveys were reprocessed and reinverted to produce a consistent and reliable interpretation throughout. Utilising surface geology and lithology logs to constrain this data set, we mapped the interface between Cenozoic sediments and underlying pre-Cenozoic rocks, producing a continuous three-dimensional model of this boundary throughout the study area.</div><div><br></div><div>Our three-dimensional model enhances the understanding of the West Musgrave palaeovalley system, redefining palaeovalley extents, revealing previously unmapped palaeovalleys and identifying areas with significant accumulations of Cenozoic sediments. This methodology was also extremely useful for investigating palaeovalley geometry, revealing southerly flowpaths consistent with regional expectations but also highlighting areas of palaeovalley deformation where neo tectonic forces have acted to alter historical flow regimes. This deformation is likely to cause groundwater compartmentalisation, mounding or connect different aquifer units. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005c).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148973).</div>

  • <div>This report presents seal capacity results of nine samples from the Birrindudu and McArthur basins, Northern Territory. Plugs were taken from depths of interest from drill holes Manbulloo S1, Broughton 1, Lamont Pass 3, 99VRNTGSDD1 and WLMB001B. These plugs were analysed via mercury injection capillary pressure testing. This work was conducted by CSIRO under contract to GA as part of the Exploring for the Future program (Officer–Musgrave–Birrindudu Module).</div>

  • <div>This report presents the rock strength and elastic properties, as tested on selected rock samples from the Birrindudu and McArthur basins. Testing was conducted by CSIRO Energy, under contract to Geoscience Australia. The tests produced parameters including:&nbsp;1) unconfined compressive strength (UCS), 2) stress-strain-time curves for UCS and repeat single-stage triaxial (STXL) experiments, 3) static elastic properties, Young’s modulus and Poisson’s ratio, and 4) failure envelopes (Mohr circles) for STXL tests. This work was conducted as part of the Exploring for the Future Program.</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>