Northern Australia
Type of resources
Keywords
Publication year
Service types
Topics
-
<div>Long-period magnetotelluric (MT) data from the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), collected as part of Geoscience Australia’s Exploring for the Future program with contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland, provide important first-order information for resolving large-scale lithospheric architecture and identifying the broad footprint of mineral systems in northern Australia. Large-scale crust/mantle conductivity anomalies map pathways of palaeo-fluid migration which is an important element of several mineral systems. For example, the Carpentaria conductivity anomaly east of Mount Isa and the Croydon, Georgetown to Greenvale conductivity anomaly are highly conductive lithospheric-scale structures, and show spatial correlations with major suture zones and known mineral deposits. These results provide evidence that some mineralisation occurs at the gradient of or over highly conductive structures at lower crustal and lithospheric mantle depths, which may represent fertile source regions for mineral systems. These observations provide a powerful means of highlighting prospective greenfield areas for mineral exploration in under-explored and covered regions.</div><div><br></div><div>Higher resolution scale-reduction MT surveys refine the geometry of some conductive anomalies from AusLAMP data, and investigate whether these deep conductivity anomalies link to the near surface. These links may act as conduits for crustal/mantle scale fluid migration to the upper crust, where they could form mineral deposits. For example, data reveals a favourable crustal architecture linking the deep conductivity anomaly or fertile source regions to the upper crust in the Cloncurry region. In addition, high-frequency MT data help to characterise cover and assist with selecting targets for drilling and improve the understanding of basement geology.</div><div><br></div><div>These results demonstrate that integration of multi-scale MT surveys is an effective approach for mapping lithospheric-scale features and selecting prospective areas for mineral exploration in covered terranes with limited geological knowledge.</div><div><br></div><div>Some models in this presentation were produced on the National Computational Infrastructure, which is supported by the Australian government. Abstract presented to the Australian Institute of Geoscientists – ALS Friday Seminar Series: Geophysical and Geochemical Signatures of Queensland Mineral Deposits October 2023 (https://www.aig.org.au/events/aig-als-friday-seminar-series-geophysical-and-geochemical-signatures-of-qld-mineral-deposits/)
-
With the increasing need to extend mineral exploration under cover, new approaches are required to better understand concealed geology, and to narrow the mineral prospectivity search-space. Hydrogeochemistry is a non-invasive exploration technique based on the premise that groundwater interacting with a deposit or supergene alteration can cause anomalous elemental and isotopic signatures down-gradient. Water chemistry can reflect mineralisation directly, but can also reveal other key components of a mineral system, including fluid-flow pathways (e.g. fault/fracture zones), evidence for mineral system traps (e.g. evaporites, shales), or metal sources (e.g. mafic rocks). The Northern Australia Hydrogeochemical Survey (NAHS) was a multiyear regional groundwater sampling program that aimed to understand the regional mineral potential within the Tennant Creek to Mt Isa area (Schroder et al. 2020). This presentation will explore the application of NAHS for investigating mineral potential of a region and present a workflow for establishing spatial or lithological baselines to evaluate hydrogeochemical anomalies. The Georgina Basin is well known for its phosphate potential, with several >1Mt deposits discovered in recent years such as Amaroo and Wonarah; however, the basin has been largely unmapped in terms of phosphate distribution under cover. This work focuses on a subset of 160 NAHS samples collected within two predominant aquifers of the Cambrian Georgina Basin (and time equivalents in the Wiso Basin). This focus restricts us to samples which experience a similar climate, recharge conditions, and aquifer compositions, reducing the hydrogeochemical variation that can mask intra-aquifer anomalies. Elevated dissolved phosphate, PO43- (normalised to HCO3- or Cl-), is observed in the groundwater on the eastern margin of the Georgina Basin. This region is known for Cambrian phosphorite deposits, with sampled bores proximal to a number of near-surface Georgina Basin phosphate deposits. We tested trace element (i.e. U, V and REEs) concentrations as a tool for discriminating phosphate dissolution, however at this regional scale of sampling, possible anomalies were only seen in few bores, thus it is difficult to conclude if this is a consistent relationship robust enough for exploration. More promising may be the use of REE ratios as another indicator of proximity to a phosphate deposit. Emsbo et al. (2015) note that REE compositions of phosphates are relatively consistent globally within a geological period. REE spidergrams of the high PO43- waters are similar to the average REE spidergram of Cambrian phosphates, which contrasts to the REE spidergram of low PO43- groundwaters. Cerium and Europium deviations make this relationship less diagnostic, thus we explore a series of REE ratios (i.e. Er/Dy, Er/Gd, Sm/Nd) for characterising PO43- relationships in groundwater, and use this to suggest other regions of the Georgina Basin with potential for subsurface phosphate deposits. References: Emsbo, P., McLaughlin, P.I., Breit, et al., 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Research, 27(2), 776-785. Schroder, I.F., Caritat, P. de, Wallace, L., et al., 2020. Northern Australia Hydrogeochemical Survey: Final Data Release and Hydrogeochemical Atlas for EFTF. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2020.015 Abstract presented at the 2021 Australian Earth Sciences Convention (AESC)
-
The Exploring for the Future Project Areas web service depicts the spatial extents of project work undertaken as part of Geoscience Australia's $100.5 million initiative dedicated to boosting investment in resource exploration in Australia. Each project area extent has been generated by aggregating all project work sites into an envelope polygon. An indicative spend on each f the projects is also given.
-
The Exploring for the Future Project Areas web service depicts the spatial extents of project work undertaken as part of Geoscience Australia's $100.5 million initiative dedicated to boosting investment in resource exploration in Australia. Each project area extent has been generated by aggregating all project work sites into an envelope polygon. An indicative spend on each f the projects is also given.
-
Developing Northern Australia Map produced on request for the Office of Northern Australia. It highlights development in northern Australia, indicating major mineral and energy resource projects, mineral deposits, and major infrastructure. It also incorporates data from other Government agencies, providing key information used to inform decision makers in the region such as environmental data, location of indigenous communities, native title determinations, and indigenous land use agreements.
-
<p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources
-
This dataset contains the limit and extent of Northern Australia as defined by the Northern Australia Infrastructure Facility Act 2016 (https://www.legislation.gov.au/Details/C2021C00228) and Northern Australia Infrastructure Facility Amendment (Extension and Other Measures) Act 2021 (https://www.aph.gov.au/Parliamentary_Business/Bills_Legislation/bd/bd2021a/21bd062).
-
With the increasing need to extend mineral exploration undercover, new approaches are required to better constrain concealed geology, thereby reducing exploration risk and search space. Hydrogeochemistry is an under-utilised tool that can identify subsurface geology and buried mineral system components, while also providing valuable insights into environmental baselines, energy systems and groundwater resources. With this aim, 238 water bores spanning seven geological provinces in the Northern Territory and Queensland were sampled and analysed for major cations and anions, trace elements, stable and radiogenic isotopes, organic species, and dissolved gases. Here, we demonstrate the utility of this dataset for identifying carbonate-rich aquifers and mineral system components therein. First, we use trends in major element ratios (Ca+Mg)/Cl– and SiO2/HCO–3, then strontium isotope ratios (87Sr/86Sr), to define subpopulations that reflect both spatial and compositional differences. We then apply mafic-to-felsic trace element ratios (V/Cs and Cu/Rb) to reveal elevated base metal concentrations near Lake Woods caused by water–rock interaction with dolerite intrusions. Correlated Sr concentrations between groundwater and surface sediments suggest that the geochemical evolution of these mediums in carbonate-dominated terrains is coupled. Our work develops an approach to guide mineral exploration undercover via the characterisation and differentiation of groundwaters from different aquifers, resulting in improved identification of geochemical anomalies. <b>Citation:</b> Schroder, I., de Caritat, P. and Wallace, L., 2020. The Northern Australia Hydrogeochemical Survey: aquifer lithologies, local backgrounds and undercover processes. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
<div>This dataset contains the limit and extent of Northern Australia as defined by the <a href="https://www.legislation.gov.au/Details/C2023C00186">Northern Australia Infrastructure Facility Act 2016</a> including the <a href="https://www.aph.gov.au/Parliamentary_Business/Bills_Legislation/bd/bd2021a/21bd062">Northern Australia Infrastructure Facility Amendment (Extension and Other Measures) Bill 2021</a> and the <a href="https://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Rural_and_Regional_Affairs_and_Transport/NAInfrastructure/Report">Northern Australia Infrastructure Facility Amendment (Miscellaneous Measures) Bill 2023</a>.</div>
-
<p>Understanding the geological evolution and resource prospectivity of a region relies heavily on the integration of different geological and geophysical datasets. Geochronology is one key dataset, as it underpins meaningful geological correlations across large regions, and also contributes to reconstruction of past tectonic settings. Using geochronology in combination with other datasets requires the geochronology data to be available in a unified dataset with a consistent format. Northern Australia is a vast and relatively underexplored area that offers enormous potential for the discovery of mineral and energy resources. The area has a long and variably complex tectonic history, which is yet to be fully understood. Numerous geochronology studies have been completed at various scales throughout northern Australia over several decades; however, these data are scattered amongst numerous sources, limiting the ease with which they can be used collectively. <p>The objective of this work is: <p>(1) to combine Uranium–Lead (U–Pb) data across north-northeastern Australia into one consistent dataset, and <p>(2) to visualise the temporal and spatial distribution of the U–Pb age data through thematic maps as a tool for better understanding the geological evolution and resource potential of northern Australia. <p>In this contribution, over 2000 U–Pb ages from the Northern Territory, Queensland, eastern Western Australia and northern South Australia have been compiled into a single, consistent dataset. Data were sourced from Geoscience Australia, State and Territory geological surveys and from academic literature. The compilation presented here includes age data from igneous, metamorphic and sedimentary rocks. Thematic maps of magmatic crystallisation ages, high-grade metamorphic ages and sedimentary maximum depositional ages have been generated using the dataset. These maps enable spatial and temporal trends in the rock record to be visualised up to semi-continental scale and form a component of the ‘Isotopic Atlas’ of northern Australia currently being compiled by Geoscience Australia.