From 1 - 10 / 23
  • Small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) are used to directly detect the processes of hydrocarbon generation in the 10 nm to 10 μm size pores in carbonate and siliciclastic rocks which contain no land-plant material suitable for conventional maturity determination by vitrinite reflectance. The method takes advantage of the pore-size-specific variation of neutron scattering contrast between the solid rock matrix and pore-space content with depth, which is caused by thermal maturation of organic matter through the oil and gas generation windows. SANS and USANS measurements were performed on bedding plane-orientated core slices, extracted from a series of 10 to 12 depth intervals for three wells, CKAD0001, MacIntyre 1 and Baldwin 1 in the southern Georgina Basin, central Australia. The depth intervals, intersecting the organic-rich basal ‘hot’ shales of the middle Cambrian Arthur Creek Formation, were selected based on Rock-Eval pyrolysis data. SANS and USANS results indicate that oil generation has occurred in the past in nano-sized pores in rocks that are now at depths of around 538.4 m in CKAD0001 and 799.3 m in MacIntyre 1. Furthermore, in the CKAD0001 well, the oil-wet pores extend into the larger pore-size range (at least up to 10 μm) due to the efficient expulsion of oil. At around 880 m in Baldwin 1, the influence of pyrobitumen reverts pore space from gas wet to oil wet. These hydrocarbons have remained in situ since the Devonian when the Neoproterozoic to Paleozoic section was exhumed in the Alice Springs Orogeny and subsequently eroded, preserving only remnants of the once extensive basin sediments.

  • This record presents nine new Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb zircon results obtained under the auspices of the Exploring for the Future (EFTF) Programme, a four year, federally funded initiative to better understand the mineral, energy and groundwater potential of northern Australia. The results presented here are derived from eight sedimentary samples and one probable tuffaceous sample together belonging to the Mount Isa Province, South Nicholson Basin and Georgina Basin.

  • This web service provides access to satellite imagery products for the identification of potential groundwater dependent ecosystems (GDEs) in the South Nicholson - Georgina region.

  • The Exploring for the Future Program facilitated the acquisition of major geoscience datasets in northern Australia, where rocks are mostly under cover and the basin evolution, mineral, energy and groundwater resource potential are, in places, poorly constrained. In an effort to support sustainable, regional economic development and build stronger communities in these frontier areas, integration of new and legacy data within a consistent platform could enhance the recognition of cross-disciplinary synergies in sub-surface resource investigations. Here we present a case study in the South-Nicholson Basin, located in a poorly exposed area between the prospective Mt Isa Province and the McArthur Basin. Both regions host major base metal deposits, contain units prospective for energy resources, and hold significant groundwater resources in the overlying Georgina Basin. In this study, we interpret a subset of new regional-scale data, which include ~1 900 km of deep seismic reflection data and 60 000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with legacy information. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration and groundwater resource management. This study provides a 3D chronostratigraphic cover model down to the Paleoproterozoic basement. We mapped the depth to the base of intervals corresponding to geological eras, as well as deeper pre-Neoproterozoic superbasin boundaries to refine the cover model. The depth estimates, based on the compilation, interpretation and integration of geological and geophysical datasets, inform the basement architecture controls on evolution of the basin, with several key outcomes: 1) expanded mapped size of the South Nicholson Basin, potentially, increasing prospectivity for hydrocarbons and basin-hosted mineralisation, 2) improved stratigraphic unit correlations across the region, 3) identification of major crustal structures, some of which are associated with mineralisation and springs, and 4) improved basin architecture definition, supporting future investigation of groundwater resources.

  • The Georgina Basin is a Neoproterozoic to Lower Devonian sedimentary basin covering 325,000 km<sup>2</sup> of western Queensland and the Northern Territory. It is a northwest-southeast-trending extensional basin, with prospective conventional and unconventional hydrocarbon targets within Cambrian and Ordovician carbonate and siliciclastic rock units in the southern depocentres. Recent biostratigraphic work has highlighted an age discrepancy in the prospective organic-rich `hot shale' in the base of the middle Cambrian Arthur Creek Formation. This unit is present in the two major southern depocentres, the Dulcie and Toko synclines, where it has previously been considered as correlative. Recent results, however, suggest that the basal `hot shale' is either significantly younger in the Toko Syncline than in the Dulcie Syncline, or represents a very condensed section in the former. Middle Cambrian carbon isotope excursions have been correlated across a number of Australian basins and can be used to test correlative models across the Georgina depocentres. In the current study, high resolution sampling across this middle Cambrian section has been carried out in a number of wells in the Dulcie Syncline and in the Undilla Sub-basin, where the age equivalent Inca Shale is penetrated. Carbon isotopes from organic carbon (kerogen) as well as carbon and oxygen isotope ratios of four carbonate mineral phases (calcite, ankerite, dolomite and siderite) were analysed. These new data are compared with the existing carbon isotope stratigraphy from the Dulcie and Toko synclines. Initial results corroborate the new biostratigraphic interpretation. This work will provide a detailed understanding of middle Cambrian isotope signatures and correlate this prospective unit across the southern Georgina Basin. Abstract presented at AAPG/SEG International Conference & Exhibition, Melbourne, Australia, September 13-16, 2015

  • Geoscience Australia’s Exploring for the Future Program is investigating the mineral, energy and groundwater resource potential of sedimentary basins and basement provinces in northern Australia and parts of South Australia. A key challenge in exploring Australian onshore sedimentary basins is that these are often areas with limited seismic data coverage to image the sub-surface structural and stratigraphic architecture. Consequently, well logs are often the main data sets that are used to understand the sub-surface geology. Where good seismic data coverage is available, a considerable amount of time is generally required to undertake an integrated interpretation of well and seismic data. The primary aim of this study is to develop a methodology for visualising the three-dimensional tectonostratigraphic architecture of sedimentary basins using just well data, which can then be used to quickly screen areas warranting more detailed studies of resource potential. A workflow is documented which generates three-dimensional well correlations using just well formation tops to visualise the regional structural and stratigraphic architecture of the Amadeus, Canning, Officer and Georgina basins in the Centralian Superbasin. A critical step in the workflow is defining regionally correlatable supersequences that show the spatial linkages and evolution through time of lithostratigraphic units from different basin areas. Thirteen supersequences are defined for the Centralian Superbasin, which were deposited during periods of regional subsidence associated with regional tectonic events. Regional three-dimensional correlation diagrams have been generated to show the spatial distribution of these supersequences, which can be used as a reconnaissance tool for visualising the distribution of key stratigraphic elements associated with petroleum, mineral and groundwater systems. Three-dimensional well correlations are used in this study to redefine the Centralian Superbasin as encompassing all western, northern and central Australian basins that had interconnected depositional systems driven by regional subsidence during one or more regional tectonic events between the Neoproterozoic and middle Carboniferous. The Centralian Superbasin began to form during a series of Neoproterozoic rift-sag events associated with the break-up of the Rodinia Supercontinent at about 830 Ma. Depositional systems in the Amadeus and Officer basins were partially disconnected by an emergent Musgrave Province during these early stages of superbasin evolution. Subsequent regional uplift and erosion of the superbasin occurred during the late Neoproterozoic–early Cambrian Petermann Orogeny. The Officer and Amadeus were permanently disconnected by the uplifted Musgrave Province following this major orogenic event. Rejuvenation of the Centralian Superbasin occurred during middle–late Cambrian extension and subsidence resulting in the generation of several new basins including the Canning Basin. Subsidence during the Ordovician Larapinta Event created an intracontinental seaway that episodically connected the Canning, Amadeus, Georgina and Officer basins to the proto-Pacific Ocean in the east. Fragmentation of the Centralian Superbasin began at the onset of the Alice Springs Orogeny during the Rodingan Event when the uplifted Arunta Region disconnected the Amadeus and Georgina basins. The Rodingan Movement initially disconnected depositional systems between the Canning and Amadeus basins, which promoted the development of a large evaporitic depocentre over the southern Canning Basin. However, these basins subsequently reconnected during the Early Devonian Prices Creek Movement. Complete fragmentation of the Centralian Superbasin occurred during the Late Devonian–middle Carboniferous Pillara Extension Event when the Canning and Amadeus basins became permanently disconnected. Widespread uplift and erosion at the culmination of the Alice Springs Orogeny in the middle Carboniferous resulted in final closure of the Centralian Superbasin.

  • Stratigraphic drill hole NDI Carrara 1 was drilled as a collaboration between Geoscience Australia (GA), the Northern Territory Geological Survey (NTGS) and the Mineral Exploration Cooperative Research Centre (MinEx CRC). It reached a total depth of 1751 m in late 2020 and is the first drill hole to intersect the undifferentiated Proterozoic rocks of the Carrara Sub-Basin. It intersected approximately 630 m of Cambrian Georgina Basin sedimentary rocks overlying the ~1100 m of Proterozoic carbonates, black shales and other siliciclastics of the Carrara Sub-Basin succession. The formational assignments of the Georgina Basin succession are preliminary and were assigned in the field. The units intersected comprise the Border Waterhole Formation (~531m to ~630m), which is overlain by the Currant Bush Limestone (~249m to ~531m), which in turn is overlain by the Camooweal Dolostone (0m to ~249m). Of these, only the lower 80% of the Currant Bush Limestone and the entire Border Waterhole Formation were cored. This report presents biostratigraphic results from macrofossil examination of NDI Carrara 1 core samples within the Georgina Basin section.

  • <div>This report brings together data and information relevant to understanding the regional geology, hydrogeology, and groundwater systems of the South Nicholson – Georgina (SNG) region in the Northern Territory and Queensland. This integrated, basin-scale hydrogeological assessment is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program. While the northern Georgina Basin has been at the centre of recent investigations as part of studies into the underlying Beetaloo Sub-basin, no regional groundwater assessments have focused on central and southern parts of the Georgina Basin since the 1970s. Similarly, there has been no regional-scale hydrogeological investigation of the deeper South Nicholson Basin, although the paucity of groundwater data limited detailed assessment of the hydrogeology of this basin. This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>Key outputs arising from this study include: (1) the development of a hydrostratigraphic framework for the region, incorporating improved aquifer attribution for over 5,000 bores; and (2) publicly available basin-scale groundwater GIS data layers and maps, including a regional watertable map for the whole Georgina Basin. This regional assessment provides new insights into the hydrogeological characteristics and groundwater flow dynamics within the Georgina Basin, which can aid in the sustainable management of groundwater for current and future users reliant on this critical water resource.</div><div><br></div><div><br></div>

  • The Western Davenport region has been identified as an area of interest for future agricultural development. However, realisation of this potential depends on access to a reliable supply of groundwater, underpinned by rigorous geological and groundwater information. A three-dimensional stratigraphic model has been created for the Western Davenport area of the Southern Stuart Corridor project under the Exploring for the Future program. Our interpretation integrates airborne electromagnetic data with historical drillhole and outcrop data to improve geological and hydrogeological understanding. Results show that stratigraphies of the Wiso and Georgina basins are equivalent and laterally continuous in this area. This enables a more complete hydrostratigraphy to be defined and underpins improved hydrogeological conceptualisation. New hydrochemical data support the conceptual model that the aquifers of the Wiso and Georgina basins are interconnected at a regional scale. The initial assessment of water quality indicates that groundwater may support further agricultural development. Analysis of new water chemistry data has improved understanding of groundwater processes and potential areas of recharge. This work will inform management decisions to enhance the economic and social opportunities in the Western Davenport area, while protecting the environmental and cultural value of water resources. <b>Citation:</b> Northey, J.E., Clark, A.D., Smith, M.L. and Hostetler, S., 2020. Delineation of geology and groundwater resources in a frontier region: Western Davenport, Northern Territory. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Small-angle neutron scattering (SANS) measurements were performed on 32 rock samples from the southern Georgina Basin, central Australia to assess nanopore anisotropy. Anisotropy can only be determined from oriented core material, hence the samples were cut perpendicular to bedding in cores selected from three wells that intersect the base of the hydrocarbon-bearing, organic-rich middle Cambrian Arthur Creek Formation; the latter is the source rock for both unconventional and conventional plays in the basin. The evolution of anisotropy of two-dimensional SANS intensity profiles with depth (for pore diameters ranging from 10 nm to 100 nm) was quantified and correlated with SANS intensity and total organic carbon (TOC) content. Our results confirm hydrocarbon generation at the base of the Arthur Creek Formation. The nanopore anisotropy in the basal Arthur Creek Formation at the well locations CKAD0001 (oil generation window) and MacIntyre 1 (late oil generation window) varies roughly according to normal compaction. When the Arthur Creek Formation is in the gas window, as sampled at Baldwin 1, there is a strong (negative) correlation between the average vertical-to-horizontal pore shape anisotropy and SANS intensity. The results indicate that unconventional gas production from organic-rich regions of over mature shale may be adversely affected by abnormal pore compaction.