Exploring For The Future
Type of resources
Keywords
Publication year
Service types
Topics
-
This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.
-
Exploring for the Future is a four-year $100.5 million programme to unveil new resource opportunities in Northern Australia and parts of South Australia. It is being conducted by Geoscience Australia in partnership with state and Northern Territory government agencies, CSIRO, and universities. This initiative, which is due for completion in 2020–2021, has started to deliver a suite of new products to help unveil new resource opportunities in Northern Australia. The programme has three inter-related elements: minerals, energy and groundwater, which collectively aims to: • provide baseline pre-competitive geoscience data to inform and encourage government, industry and community decision making about sustainable resources management to improve Northern Australia’s economic development • attract investment in resource exploration to Northern Australia • deliver an assessment of groundwater resources for irrigated agriculture and community water supplies as well as for mineral and energy development; and an assessment of the potential impacts of those developments. The minerals-focussed projects have been designed with a three-fold programme logic (Figure 1): 1) Northern Australia-wide projects, 2) focussed integrated studies, and 3) generic innovation and method development. The minerals-focussed project activities address a number of the highest and high priority themes identified by the mineral exploration industry in the UNCOVER Roadmap. 1) Northern Australia-wide projects This work programme will develop and use innovative tools and techniques to collect semi-continental a) geological, b) geochemical, and c) geophysical data on an unprecedented scale. The commencement of these projects is focussed on the region between Tennant Creek and Mt Isa (TISA). a) Geological projects Because one person’s cover is another person’s basement, a Northern Australia-wide series of time-based geological maps are being prepared. Building from the national 1:1 M scale Surface Geology Map of Australia, the Cenozoic, Mesozoic, Palaeozoic and Neoproterozoic layers will be successively removed to reveal a series of ‘solid geology’ maps at 1:1M scale. These maps will form the basis for subsequent 3D models and resource assessments. Extensive use is being made of national-scale potential field geophysical data and existing drillhole data. This has the combined effect of calibrating the geological interpretation of the geophysics with known rocks and attributing the interfaces with their actual depth (from drilling or geophysical estimates). Resultant 3D data are being stored in a new database called Estimates of Geological and Geophysical Surfaces (EGGS); this is a national repository for depth-determined geological information from any method (drilling or geophysical estimate). The EGGS’ database will form the depth-control points from which new 3D surfaces will be constructed and imported into a 3D geological model along with uncertainty. A new peak metamorphic map of Australia is also in production, with a subset available for Northern Australia in the first phase. This map is a compilation of quantitative and qualitative estimates of metamorphic conditions across Australia. The maps will provide important constraints on the crustal exhumation and (mineral) preservation history as well as thermo-barometric evolution of Australia. b) Geochemical projects An atlas of the surface of Northern Australia, as a subset of the national atlas, is in preparation. Geoscience Australia has time-series LANDSAT data from NASA extending back into the 1980s. Each pixel from each scene has been organised in Digital Earth Australia (DEA) so the archive can be ‘data-mined’ to extract pixels with the least vegetation and cloud-cover effects. Products of this work will be a new national Bare Earth image along with iron oxide, silica and clay mineral maps of the surface at 25 m resolution. The European Space Agency’s Sentinel 2 satellite system provides global coverage of multispectral earth-observation data at 10 m resolution from these data. A new cloud-free seamless Sentinel 2 national map will be produced at 10 m resolution. A suite of new machine learning codes has been produced in collaboration with DATA61. These codes are being deployed on the national whole rock and surface geochemical datasets to produce national surface maps of the major elements. An isotopic atlas for northern Australia is being prepared, consisting of a suite of map layers including Sm–Nd, Lu–Hf, U–Pb, Ar–Ar and Pb–Pb; it will be delivered in GIS form, and draped on the aforementioned 3D surfaces. In addition, selected age dating of geological units through U–Pb SHRIMP geochronology and various other dating techniques for direct dating of key mineral deposits are being undertaken. c) Geophysical projects The world’s largest airborne electromagnetic (AusAEM) survey and the most extensive long-period magnetotelluric (AusLAMP) survey are well underway. At the time of writing (February 2018), 20 600 line-km of the 60,000 planned AusAEM data have been flown and 155 new AusLAMP stations have been acquired. In addition, a new seismic tomographic velocity model will be constructed from historical earthquake data; these data form the basis of the Australia-wide AusARRAY project. Gravity data are being infilled at higher resolutions in areas where station spacing is >4 km using a mix of ground and airborne gravity and airborne gravity gradiometry. 2) Focused Integrated Studies (TISA) The region between Tennant Creek and Mt Isa (TISA) is the initial focus of all the above-mentioned activities plus a series of additional projects. This vast under cover region lies between the great mining centres of Tennant Creek (Cu, Au) and Mt Isa (Cu, Pb, Zn, Ag). The thickness of cover is variable and the underlying ‘basement’ geology is poorly known. The region lies at a key junction in Australian geology, with north-south striking domains in the east joining east-west and northwest-southeast striking domains in the west. The region showed unexplained base metal anomalism in the National Geochemical Survey of Australia (NGSA) and at depth, it has variable seismic velocity and Moho depths. The programme has collected 782 surface geochemical and 118 groundwater samples to augment the broad-spaced NGSA dataset; laboratory results are being modelled with the first products due for release in March 2018. The AusARRAY project deployed 120 passive seismic recorders that will remain in the TISA region until later this year. Two more deployments are expected in the life of the programme at locations to be confirmed. A total of 2724 ground gravity stations were collected; the data was released in 2017. A total of 1100 km of deep seismic reflection data have been acquired and processed (see Henson this volume), with processed data to be released in March 2018, and interpretation products to follow. The aim of focusing the activities into one region is to provide the best possible suite of data that will be integrated into an assessment of the undercover mineral potential of the TISA region. This assessment and the geological and mineral systems interpretations of the above data will be tested by a stratigraphic drilling programme in 2019. Assessments are underway for basin-hosted base metals (Cu, Pb, Zn) and for iron-oxide-copper-gold mineral systems. The basin assessment will draw on well-established petroleum systems approaches and apply them to these mineral systems. When the programme is complete, the TISA region will arguably be the best imaged and understood piece of lithosphere on the planet. 3) Innovation and Method Development To complement data acquisition, new big data management and data analytical methods, tools and platforms are being developed to maximise data value. Strategic collaborations have been established with world-leading experts at Australian universities and DATA61 to develop a suite of new geoscience-relevant computer codes and products that will be released in open source repositories (GitHub) and be incorporated into the Australian National Virtual Geophysical Laboratory (ANVGL). Given the vast range of activities being conducted, many of which are novel, effort is being made to share the generic lessons. This includes publishing software codes and standard operating procedures as well as developing an Explorer’s Guide for the TISA region that will have generic applicability elsewhere. Particular effort is being made to transfer knowledge and receive feedback from industry through a series of workshops that commenced in 2017. Conclusions Exploring for the Future, an exciting initiative in collaboration with state and NT partners, will: • Assist in securing an ongoing pipeline of new discoveries and help maintain Australia’s position as a major global mineral and energy exporter. • Determine the location, quantity and quality of groundwater resources to inform water management options, including infrastructure development and water banking. • Benefit the Mining Equipment, Technology and Services (METS) sector by drawing on private sector expertise in undertaking data acquisition and analysis.
-
The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The initial phase of this program led by Geoscience Australia focussed on northern Australia to gather new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. The northern Lawn Hill Platform is an intracratonic poly-phased history region of Paleoproterozoic to Mesoproterozic age consisting of mixed carbonates, siliciclastics and volcanics. It is considered a frontier basin with very little petroleum exploration to date, but with renewed interest in shale and tight gas, that may present new exploration opportunities. An understanding of the geochemistry of the sedimentary units, including the organic richness, hydrocarbon-generating potential and thermal maturity, is therefore an important characteristic needed to understand the resource potential of the region. As part of this program, Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from 2 wells of the northern Lawn Hill Platform.
-
Multiple geochronology and isotopic tracer datasets have been compiled at continental scale and visualised in map view. The compiled datasets include Sm-Nd model ages of magmatic rocks; Lu-Hf isotopes from zircon; Pb isotopes from ore-related minerals such as galena and pyrite; U-Pb ages of magmatic, metamorphic and sedimentary rocks; and K-Ar and 40Ar-39Ar ages from minerals and whole rocks. A variety of maps can be derived from these datasets, which we refer to as an Isotopic Atlas of Australia. This ‘atlas’ provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle (Sm-Nd; Lu-Hf), chemical and isotopic evolution in the source regions for mineralising fluids (Pb-Pb), magmatic and high-grade metamorphic reworking of the crust (U-Pb), and cooling and exhumation of the mid-crust (K-Ar; 40Ar-39Ar). These datasets and maps unlock the collective value of several decades of geochronological and isotopic studies conducted across Australia, and provide an important complement to other geological maps and geophysical images—in particular, by adding a time dimension to 2D and 3D maps and models. <b>Citation: </b>Fraser, G.L., Waltenberg,K., Jones, S.L., Champion, D.C., Huston, D.L., Lewis, C.J., Bodorkos, S., Forster, M., Vasegh, D., Ware, B. and Tessalina, S., 2020. An Isotopic Atlas of Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The hyperspectral HyLoggerTM instrument for collecting high resolution spectra data of drill core and drilling chips is a widely used and powerful in mineral and energy exploration, including sediment hosted mineralisation and hydrocarbons. It enables mapping of hydrothermal, diagenetic, and weathering assemblages, clarification of stratigraphy, and determination of primary mineralogy. This report presents key results of hyperspectral data from the HyLogger-3TM instrument collected from drilling in the Southern Stuart Corridor (SSC) project area in the Northern Territory conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The results show that HyLogger plots are in most cases in the most effective means of identification of stratigraphic contacts. HyLogger plots are also especially effective and determining the depth and mineralogy of weathering and distinguishing provenance in shallow transported material such as palaeovalley fill and alluvium. Geological observations are however still crucial, especially in determining texture, which cannot be determined by the HyLogger scans or from photographs of chips and core, and in cases where contamination obscures or confuses the spectral signals. Weathering in the SSC can be determined by the appearance of dickite and poorly crystalline kaolinite. This allows a better determination of base of weathering than visual means: generally based of the presence of oxidised iron phases such as goethite and haematite (which are not definitive where the rocks already contained these prior to weathering), or where oxidised iron deposition has not occurred. This aids in depth of weathering mapping from regional AEM data. The ability of the HyLogger to discriminate between swelling (montmorillonite) and non-swelling (kaolinite, dickite) clays is potentially significant in the prediction of aquifer properties and the validation of borehole MR methods. The detection of zones of potential dolomitisation and dedolomisation through mineralogy (presence of dolomite and possible secondary calcite and magnesite, respectively) in carbonate units has the potential to similarly predict properties in carbonate units, through the potential increase in porosity/permeability of the first and decreased porosity/permeability of the second.
-
This report presents key results from the Ti Tree Basin project completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. Hydrogeological data acquisition and interpretation in the Ti Tree Basin, Northern Territory, was undertaken by Geoscience Australia as part of the EFTF Program. Located ~150 km north of Alice Springs, the Cenozoic basin hosts regionally significant groundwater resources, relied upon by communities, irrigators and pastoralists. Although the basin has been extensively studied over several decades, critical information gaps still remain, particularly for the deep groundwater system (>80 m depth). Work combining new geophysical and hydrochemical data with pre-existing datasets has revealed a more complex basin hydrogeology. Mapping based on airborne electromagnetics (AEM) has identified complex structural controls on the distribution of the deep basin sequence, with consequences for aquifer compartmentalisation, regional groundwater flow and aquifer connectivity. The mapping also shows where the basin sediments are much thicker than previously drilled. The hydrochemical assessment highlighted the complexity in groundwater recharge mechanisms, showing that the rainfall threshold for effective recharge and the role of evaporation are not consistent across the floodout zones in the basin. The EFTF products provide guidance for future hydrogeological investigations. In particular, there is evidence from historic drilling for potentially useful groundwater resources in the underexplored deep basin sequence. The EFTF program has expanded the knowledge base and datasets for the Ti Tree Basin. Collectively, these are valuable assets not just for basin groundwater management but also for the broader understanding of groundwater resources and processes in central Australia.
-
This fact sheet sets out the goals, vision and benefits of the Exploring for the Future program, as well as the ways we conduct fieldwork and what the information gathered is used for.
-
Exploring for the Future (EFTF) is a four-year (2016-20) geoscience data and information acquisition program that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. Hydrogeochemical surveys utilise groundwater as a passive sampling medium to reveal the chemistry of the underlying geology including hidden mineralisation. These surveys also potentially provide input into regional baseline groundwater datasets that can inform environmental monitoring and decision making. Geoscience Australia, as part of the Australian Government’s EFTF program, undertook an extensive groundwater sampling survey in collaboration with the Northern Territory Geological Survey and the Geological Survey of Queensland. During the 2017, 2018 and 2019 dry season, 224 groundwater samples (including field duplicate samples) were collected from 203 pastoral and water supply bores in the Tennant Creek-Mt Isa EFTF focus area of the Northern Territory and Queensland. An additional 38 groundwater samples collected during the 2013 dry season in the Lake Woods region from 35 bores are included in this release as they originate from within the focus area. The area was targeted to evaluate its mineral potential with respect to iron oxide copper-gold, sediment-hosted lead-zinc-silver and Cu-Co, and/or lithium-boron-potash mineral systems, among others. The 2017-2019 surveys were conducted across 21 weeks of fieldwork and sampled groundwater for a comprehensive suite of hydrogeochemical parameters, including isotopes, analysed over subsequent months. The present data release includes information and atlas maps of: 1) sampling sites; 2) physicochemical parameters (EC, pH, Eh, DO and T) of groundwater measured in the field; 3) field measurements of total alkalinity (HCO3-), dissolved sulfide (S2-), and ferrous iron (Fe2+); 4) major cation and anion results; 5) trace element concentrations; 6) isotopic results of water (δ18O and δ2H), DIC (δ13C), dissolved sulfate (δ34S and δ18O), dissolved strontium (87Sr/86Sr), and dissolved lead (204Pb, 206Pb, 207Pb, and 208Pb) isotopes; 7) dissolved hydrocarbon VFAs, BTEX, and methane concentrations, as well as methane isotopes (δ13C and δ2H); and 8) atlas of hydrogeochemical maps representing the spatial distribution of these parameters. Pending analyses include: CFCs and SF6; tritium; Cu isotopes; and noble gas concentrations (Ar, Kr, Xe, Ne, and 4He) and 3He/4He ratio. This data release (current as of July 2021) is the second in a series of staged releases and interpretations from the Northern Australia Hydrogeochemical Survey. It augments and revises the first data release, which it therefore supersedes. Relevant data, information and images are available through the GA website (https://pid.geoscience.gov.au/dataset/ga/133388) and GA’s EFTF portal (https://portal.ga.gov.au/).
-
<p>Dataset "Detailed surface geology – Upper Burdekin basalt provinces", downloaded from the Queensland Spatial Catalogue in April 2017 and clipped to the Upper Burdekin basalt provinces. <p>The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in Department of Natural Resources and Mines MERLIN Database. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution
-
This grid dataset is an estimation of the relative surface potential for recharge within the McBride Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>References</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688