water resources
Type of resources
Keywords
Publication year
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
In April 2005, Geoscience Australia (GA) conducted a field survey of the waterbodies of the Torbay catchment drainage system. The Torbay Catchment Group and the Western Australian Department of Environment commissioned this study in order to address critical knowledge gaps in their understanding of the major components of the nutrient budget. In particular, the role of benthic nutrient fluxes, their magnitude, and total benthic nutrient supply to the water column for phytoplankton growth. The waterbodies studied were Torbay inlet, Lake Powell, Marbellup Brook and Lake Manarup. The key findings of this study were: 1. the sediments are a major source of nutrients to the water column of all waterbodies; and 2. denitrification, nitrogen fixation and benthic photosynthesis are critical processes influencing overall water quality.
-
This project was conducted by Geoscience Australia in collaboration with the Water Science Branch of the Department of Water, Western Australia, to acquire baseline information supporting the condition assessment for Hardy Inlet. The project contributes to the Estuarine Resource Condition Indicators project funded by the Strategic Reserve of the National Action Plan for Salinity and Water Quality / National Heritage Trust and forms part of the Resource Condition Monitoring endorsed under the State (Western Australia) Natural Resource Management framework. Two surveys were undertaken in Hardy Inlet in September 2007 and April 2008 with the aim to develop an understanding of the historical environmental changes and current nutrient and sediment conditions for the purpose of developing sediment indicators to characterise estuary condition.
-
A PowerPoint presentation showing regional interpretations of data from the Frome airborne electromagnetic survey, presented at a workshop on 30 November 2011 at the University of Adelaide, South Australia
-
This report presents the results of a study by Geoscience Australia of Stokes Inlet and Wellstead Estuary, located in southwestern Western Australia, based on data collected during surveys in March 2006 and May 2007. It includes the present day rates of organic matter breakdown in the sediments of these estuaries, sediment and porewater properties, sedimentation rates, and an account of the historical environmental changes to these estuaries based on the sediment record. In the report you will find: 1. Purpose and background 2. Environmental Setting 3. Methods 4. Benthic Chambers 5. Sediment Cores and Grabs 6. Results and Discussions 7. Environmental conditions during the survey 8. Present-day nutrient dynamics in Stokes Inlet 9. Palaeoenvironmental reconstruction 10. Key conclusions
-
Geoscience Australia (GA) was invited by Murray-Darling Basin Authority (MDBA) in 2010 to participate in an evaluation of the Intermap IFSAR (Interferometric Synthetic Aperture RADAR) data that was acquired as part of the Murray-Darling Basin Information Infrastructure Project Stage 1 (MDBIIP1) in 2009. This evaluation will feed into the business case for Stage 2 of the project. As part of the evaluation GA undertook the following: 1. A comparison of the IFSAR Digital Surface Model (DSM) and Digital Terrain Model (DTM) with a recent LiDAR acquisition, covering approximately 9000Km2 of the Lower Darling Region. It focused on assessment of the data over various land cover and terrain types and identified opportunities and issues with integrating IFSAR with LiDAR. 2. A comparison of the IFSAR Vegetation Canopy Surface (DSM minus DTM) with the Lower Darling LiDAR Canopy Elevation Model (CEM). 3. A comparison between currently mapped man-made and natural water bodies over the Murray-Darling Basin with the IFSAR derived products (water mask). 4. Application of the National Catchment Boundaries (NCBs) methodology to the IFSAR data and comparison with the delineated watersheds from PBS&J (Intermap's sub-contractor). This report outlines the findings of this evaluation based on the 4 items above MDBA requested.
-
This document represents part of Geoscience Australia's contribution to the National Estuaries Assessment and Management (NE) project, Theme 5 (Assessment and Monitoring), Task 5A 'Conceptual Models of Australian Estuaries and Coastal Waterways'. The report contains comprehensive conceptual models of the biophysical processes that operate in a wide range of estuaries and coastal waterways found around Australia. Geomorphic conceptual models have been developed for each of the seven types of Australian estuaries and coastal waterways. Each conceptual model comprises a three-dimensional block diagram depicting detailed summaries of the structure, evolutionary characteristics, and geomorphology of each coastal waterway type, which are ?overlain? by flow diagrams that depict some of the important biotic and abiotic processes, namely: hydrology, sediment dynamics, and nutrient dynamics. Geomorphology was used as the common 'base layer' in the conceptual models, because sediment is the fundamental, underlying substrate upon which all other estuarine processes depend and operate. In the conceptual models, wave-dominated systems are depicted as having a relatively narrow entrance that restricts marine flushing, and low water-column turbidity except during extreme events. Tide-dominated systems feature relatively wide entrances, which likely promote efficient marine flushing, very large relative areas of intertidal habitats, and naturally high turbidity due to strong turbulence induced by tidal currents. Strong evidence exists suggesting that estuaries (both wave- and tide-dominated) are the most efficient 'traps' for terrigenous and marine sediments, and these are depicted as providing the most significant potential for trapping and processing of terrigenous nutrient loads. Intertidal areas, such as mangroves and saltmarshes, and also the central basins of wave-dominated estuaries and coastal lagoons, are likely to accumulate the majority of trapped sediments and nutrients. Conceptual model diagrams, with overlays representing environmental processes, can be used as part of a decision support system for environmental managers, and as a tool for comparative assessment in which a more integrative and shared vision of the relationship between components in an ecosystem can be applied.
-
Shows point location of large reservoirs in Australia owned by a public authority. Attribute information includes: -name of the dam wall and associated water body -name of the stream on which it is located -storage capacity and surface area of the water body -ownership -construction details of the dam wall. Data is captured from 1:1 million scale source material. Data is suitable for use in GIS applications. Product Specifications Coverage: Australia Currency: August 1990 Coordinates: Geographical Datum: AGD66 Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online and CD-ROM (fee applies)
-
This dataset maps the geomorphic habitat environments (facies) for 73 Tasmanian coastal waterways. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. The majority of near pristine estuaries in Tasmania are located in the south and west of the State and on Cape Barren Island, according to the Department of Primary Industries, Water and Environment.
-
This dataset maps the geomorphic habitat environments (facies) for 63 Northern Territory coastal waterways. This version of the dataset includes 48 newly mapped estuaries, classified as 'Near pristine'. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. Estuaries on the northern Arnhem Land, Gulf of Carpentaria coasts are predominantly tide-dominated estuaries, which vary greatly in size and floodplain characteristics.