From 1 - 10 / 33
  • One of the key challenges in assessing earthquake hazard in Australia is understanding the attenuation of ground-motion through the stable continental crust. There are now a handful of ground-motion models (GMMs) that have been developed specifically to estimate ground-motions from Australian earthquakes. These GMMs, in addition to models developed outside Australia, are considered in the 2018 National Seismic Hazard Assessment (NSHA18; Allen et al., 2017). In order to assess the suitability of candidate GMMs for use in the Australian context, ground-motion data forom small-to-moderate Australian earthquakes have been gathered. Both qualitative and quantitative ranking techniques (e.g., Scherbaum et al., 2009) have been applied to determine the suitability of candidate GMMs for use in the NSHA18. This report provides a summary of these ranking techniques and provides a discussion on the utility of these methods for use in seismic hazard assessments in Australia; in particular for the NSHA18. The information supplied herein was provided to participants of the Ground-Motion Characterisation Expert Elicitation workshop, held at Geoscience Australia on 9 March 2017 (Griffin et al., 2018).

  • The 2018 National Seismic Hazard Assessment (NSHA18) aims to provide the most up-to-date and comprehensive understanding of seismic hazard in Australia. As such, NSHA18 includes a range of alternative models for characterising seismic sources and ground motions proposed by members of the Australia earthquake hazard community. The final hazard assessment is a weighted combination of alternative models. This report describes the use of a structured expert elicitation methodology (the ‘Classical Model’) to weight the alternative models and presents the complete results of this process. Seismic hazard assessments are inherently uncertain due to the long return periods of damaging earthquakes relative to the time period of human observation. This is especially the case for low-seismicity regions such as Australia. Despite this uncertainty, there is a demand for estimates of seismic hazard to underpin a range of decision making aimed at reducing the impacts of earthquakes to society. In the face of uncertainty, experts will propose alternative models for the distribution of earthquake occurrence in space, time and magnitude (i.e. seismic source characterisation), and how ground shaking is propagated through the crust (i.e. ground motion characterisation). In most cases, there is insufficient data to independently and quantitatively determine a ‘best’ model. Therefore it is unreasonable to expect, or force, experts to agree on a single consensus model. Instead, seismic hazard assessments should capture the variability in expert opinion, while allowing that not all experts are equally adept. Logic trees, with branches representing mutually exclusive models weighted by expert opinion, can be used to model this uncertainty in seismic hazard assessment. The resulting hazard assessment thereby captures the range of plausible uncertainty given current knowledge of earthquake occurrence in Australia. For the NSHA18, experts were invited to contribute peer-reviewed seismic source models for consideration, resulting in 16 seismic source models being proposed. Each of these models requires values to be assigned to uncertain parameters such as the maximum magnitude earthquake expected. Similarly, up to 20 published ground motion models were identified as being appropriate for characterising ground motions for different tectonic regions in Australia. To weight these models, 17 experts in seismic hazard assessment, representative of the collective expertise of the Australian earthquake hazard community, were invited to two workshops held at Geoscience Australia in March 2017. At these workshops, the experts each assigned weights to alternative models representing their degree of belief that a particular model is the ‘true’ model. The experts were calibrated through a series of questions that tested their knowledge of the subject and ability to assess the limits to their knowledge. These workshops resulted in calibrated weights used to parameterise the final seismic source model and ground motion model logic trees for NSHA18. Through use of a structured expert elicitation methodology these weights have been determined in a transparent and reproducible manner drawing on the full depth of expertise and experience within the Australia earthquake hazard community. Such methodologies have application to a range of uncertain problems beyond the case of seismic hazard assessment presented here.

  • The 10% in 50 year seismic hazard map is the key output from the 2018 National Seismic Hazard Assessment for Australia (NSHA18) as required for consideration by the Standards Australia earthquake loading committee AS1170.4

  • People in Australia are surprised to learn that hundreds of earthquakes occur below our feet every year. The majority are too small to feel, let alone cause any damage. Despite this, we are not immune to large earthquakes.

  • This ecat record refers to the data described in ecat record 123048. The data, supplied in shapefile format, is an input to the 2018 National Seismic Hazard Assessment for Australia (NSHA18) product (ecat 123020) and the 2018 Probabilistic Tsunami Hazard Assessment for Australia (PTHA18) product (ecat 122789).

  • Many mapped faults in the south-eastern highlands of New South Wales and Victoria are associated with apparently youthful topographic ranges, suggesting that active faulting may have played a role in shaping the modern landscape. This has been demonstrated to be the case for the Lake George Fault, ~25 km east of Canberra. The age of fluvial gravels displaced across the fault indicates that relief generation of approximately 250 m has occurred in the last ca. 4 Myr. This data implies a large average slip rate by stable continental region standards (~90 m/Myr assuming a 45 degree dipping fault), and begs the question of whether other faults associated with relief in the region support comparable activity rates. Preliminary results on the age of strath terraces on the Murrumbidgee River proximal to the Murrumbidgee Fault are consistent with tens of metres of fault activity in the last ca. 200 kyr. Further south, significant thicknesses of river gravels are over-thrust by basement rocks across the Tawonga Fault and Khancoban-Yellow Bog Fault. While these sediments remain undated, prominent knick-points in the longitudinal profiles of streams crossing these faults suggest Quaternary activity commensurate with that on the Lake George Fault. More than a dozen nearby faults with similar relief are uncharacterised. Recent seismic hazard assessments for large infrastructure projects concluded that the extant paleoseismic information is insufficient to meaningfully characterise the hazard relating to regional faults in the south-eastern highlands, despite the potential for large earthquakes alluded to above. While fault locations and extents remain inconsistent across scales of geologic mapping, and active fault lengths and slip rates remain largely unquantified, the same conclusion may be drawn for other scales of seismic hazard assessment.

  • Instrumentally observed earthquakes sequences typically show clusters of earthquakes interspersed with periods of quiescence. These ‘bursty’ sequences also have correlated inter-event times (‘long-term memory’). In contrast, elastic rebound theory forms the basis of the standard earthquake cycle model, and predicts large earthquakes to occur regularly through cycles of strain accumulation and release (periodicity). In this model the conditional probability of future large earthquakes is reduced immediately following fault rupture, and inter-event times are independent. Here we use the burstiness and memory coefficient metrics to characterize more than 100 long-term earthquake records. We find that large earthquake occurrence on the majority of Earth’s faults is weakly periodic and does not exhibit long-term memory; earthquakes occur more regularly than a random Poisson process although inter-event times are variable. In contrast, clustering occurs in slowly deforming regions (annual rates < 2 x 10-4), and is not explained by elastic rebound theory. <b>Citation:</b> Griffin, J. D., Stirling, M. W., & Wang, T. (2020). Periodicity and clustering in the long‐term earthquake record. <i>Geophysical Research Letters</i>, 47, e2020GL089272. https://doi.org/10.1029/2020GL089272

  • <p>The mechanisms that lead to the localisation of stable continental region (SCR) seismicity, and strain more generally, remain poorly understood. Recent work has emphasised correlations between the historical record of earthquake epicentres and lateral changes in the thickness, composition and/or viscosity (thermal state) of the lithospheric mantle, as inferred from seismic velocity/attenuation constraints. Fluid flow and the distribution of heat production within the crust have also been cited as controls on the location of contemporary seismicity. The plate margin-centric hypothesis that the loading rate of crustal faults can been understood in terms of the strain rate of the underlying lithospheric mantle has been challenged in that a space-geodetic strain signal is yet to be measured in many SCRs. Alternatives involving the release of elastic energy from a pre-stressed lithosphere have been proposed. <p>The Australian SCR crust preserves a rich but largely unexplored record of seismogenic crustal deformation spanning a time period much greater than that provided by the historical record of seismicity. Variations in the distribution, cumulative displacement, and recurrence characteristics of neotectonic faults provide important constraint for models of strain localisation mechanisms within SCR crust, with global application. This paper presents two endmember case studies that illustrate the variation in deformation characteristics encountered within Australian SCR crust, and which demonstrate the range and nature of the constraint that might be imposed on models describing crustal deformation and seismic hazard.

  • In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.

  • <div>This Geoscience Australia Record contains technical data and input files that, when used with the Global Earthquake Model’s (GEM’s) <em>OpenQuake-engine</em> probabilistic seismic hazard analysis software (Pagani<em> et al.</em>, 2023), will enable end users to explore and reproduce the 2023 National Seismic Hazard Assessment (NSHA23) of Australia (Allen<em> et al.</em>, 2023b). Output data, as calculated by Geoscience Australia using Version 3.16.1 of the <em>OpenQuake-engine</em>, are also provided. This report describes the NSHA23 input and output data only and does not discuss the scientific rationale behind the model development or the development of the NSHA23 earthquake catalogue. These details are provided in Allen<em> et al.</em> (2023b) and (Allen<em> et al.</em>, 2024), and respective references therein. The NSHA23 provides estimates of seismic hazard for the six Australian states and two mainland territories. However, it does not provide updated hazard factors for Australia’s Antarctic and other offshore territories (e.g., Christmas Island, Cocos Island, Heard Island, Lord Howe Island, Macquarie Island and Norfolk Island).</div>