From 1 - 10 / 34
  • These datasets cover approximately 3500 sq km in the central sector of the Gladstone Regional Council and are part of the 2009 Capricorn Coast LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • SRTM Documentation (best viewed with mono-spaced font, such as courier) 1.0 Introduction The SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping Agency (NIMA), as well as the participation of the German and Italian space agencies, to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. The SRTM instrument consisted of the Spaceborne Imaging Radar-C (SIR-C) hardware set modified with a Space Station-derived mast and additional antennae to form an interferometer with a 60 meter long baseline. A description of the SRTM mission, can be found in Farr and Kobrick (2000). Synthetic aperture radars are side-looking instruments and acquire data along continuous swaths. The SRTM swaths extended from about 30 degrees off-nadir to about 58 degrees off-nadir from an altitude of 233 km, and thus were about 225 km wide. During the data flight the instrument was operated at all times the orbiter was over land and about 1000 individual swaths were acquired over the ten days of mapping operations. Length of the acquired swaths range from a few hundred to several thousand km. Each individual data acquisition is referred to as a "data take." SRTM was the primary (and pretty much only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days. Following several hours for instrument deployment, activation and checkout, systematic interferometric data were collected for 222.4 consecutive hours. The instrument operated virtually flawlessly and imaged 99.96% of the targeted landmass at least one time, 94.59% at least twice and about 50% at least three or more times. The goal was to image each terrain segment at least twice from different angles (on ascending, or north-going, and descending orbit passes) to fill in areas shadowed from the radar beam by terrain. This 'targeted landmass' consisted of all land between 56 degrees south and 60 degrees north latitude, which comprises almost exactly 80% of the total landmass.

  • The Busselton 2008 LiDAR data was captured over the Busselton region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • The 3 second (~90m) Shuttle Radar Topographic Mission (SRTM) derived Digital Surface Model (DSM) Version 1.0 was derived from resampling the 1 arc second (~30m) gridded DSM (ANZCW0703013336) that represents ground surface topography as well as features above the ground such as vegetation and man-made structures. The 1 second DSM was derived from the SRTM data acquired in February 2000, supported by the GEODATA 9 second DEM in void areas and the SRTM Water Body Data. Stripes and voids have been removed from the 1 second SRTM data to provide an enhanced and complete DSM for Australia and near-shore islands. A full description of the methods is in progress (Read et al., in prep). The 3 second DEM was produced for use by government and the public under Creative Commons attribution. Further information can be found in the User Guide. The 1 second DSM forms the source for the 1 second DEM with vegetation offsets removed (ANZCW0703013355) and the smoothed version (ANZCW0703014016). All 1 second products resampled to 3 seconds are available (DSM; ANZCW0703014216, DEM; ANZCW0703014182, DEM-S; ANZCW0703014217). <strong>Please note that all 1 second products are available for GOVERNMENT USERS ONLY.</strong>

  • The Lapstone Structural Complex (LSC) comprises a series of north-trending faults and monoclinal flexures forming the eastern margin of the Blue Mountains Plateau, ~50 km west of the Sydney CBD. The LSC is considered a potential source of large earthquakes, however its evolution, and in particular its tectonic history is not well constrained. The LSC is bounded to the west by the Kurrajong Fault System (KFS), a series of <i>en echelon </i>reverse faults downthrown to the west. Streams crossing the LSC oversteepen by about 2-5 times over these faults. This study aims, through longitudinal profile analysis of 18 streams crossing the LSC coupled with field observation, to determine whether the oversteepening can be attributed to a lithological change at the faults, or tectonically-induced disequilibrium. Two approaches are used. Firstly, plots of log slope versus log distance (DS plots) are produced for each of the streams. As a result of noise in the topographic data, these results are inconclusive in demonstrating either situation. Secondly, an area-slope relationship, defined by <i>A<sup>0.4</sup>S</i> (where A = area and S = slope), is plotted against downstream distance. This factor is derived from the stream incision law, <i>dz/dt </i>= <i>KA<sup>m</sup>S<sup>n</sup></i>, where <i>K</i> is assumed to be constant, and <i>m</i> and<i> n</i> are positive constants relating to erosional processes, and basin hydrologic and geometric factors. The analysis shows that in all but two streams, values for <i>A<sup>0.4</sup>S</i> are at a maximum over the LSC. Peak <i>A<sup>0.4</sup>S</i> values of about 0.2 are estimated to be equivalent to vertical incision rates of about 70 m/Ma. <i>A<sup>0.4</sup>S</i> varies with lithology; however the lithological effect is demonstrated to be of similar magnitude or smaller than the apparent structural control exerted by the LSC. All streams with catchment areas less than 100 km<sup>2</sup> have developed swamps upstream of faults on the LSC. Sediment accumulated in these swamps is generally 0.5-4 m thick, but reaches 14 m in Burralow Swamp. In Blue Gum Creek and Burralow Swamps, the sedimentary sequence includes an organic clay layer indicative of low-energy depositional conditions. Previous radiocarbon dating and pollen analysis suggests the sediment is of Pleistocene age. The elevation of the clay layer is similar to that of bedrock downstream of the faults, consistent with damming related to from tectonically induced uplift.

  • The Harvey 2008 LiDAR data was captured over the Harvey region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • This report describes products, outputs and outcomes of the three-dimensional (3D) visualisation component of the Great Artesian Basin Water Resource Assessment (the Assessment). This report specifically encompasses the following topics associated with the 3D visualisation component: - the requirements and potential benefits - the effective datasets - methodology used in content creation - the output datasets - discussions regarding outcomes, limitations and future directions. The Assessment is designed to assist water managers in the Great Artesian Basin (GAB) to meet National Water Initiative commitments. The key datasets of the 3D visualisation component include contact surfaces between major aquifers and aquitards with coverage of significant portions of the GAB, well lithostratigraphic and wire-line data and hydrogeochemistry produced by State and National Agencies. These datasets are manipulated within GOCAD® to develop the 3D visualisation component and communication products for use by end users to assist visualisation and conceptualisation of the GAB. While many options have been investigated for distribution of these 3D products, 2D screen captures and content delivery via the Geoscience Australia (GA) World Wind 3D data viewer will be the most efficient and effective products. Citation: Nelson GJ, Carey H, Radke BM and Ransley TR (2012) The three-dimensional visualisation of the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia

  • The Swan Coast hydrologically enforced digital elevation model (HDEM) was produced in 2010 as part of the Urban DEM project managed by the CRC for Spatial Information and Geoscience Australia. The HDEM was created from a combination of the following surveys; Perth, Peel, Harvey, Bunbury and Busselton LiDAR The Swan Coast 2008 LiDAR data was captured over the Swan Coast region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The HDEM was produced by SKM using the ANUDEM program. The HDEM ensures that primary stream/channel flow, and water flow across the land surface are accurately represented. The hydrologically enforced HDEM depicts water bodies as being flat, and water courses depict consistent downward flow of water unimpeded by vegetation or man-made structures such as bridges and major culverts. Drainage enforcement was limited to watercourse lines depicted on 1:25,000 topographic mapping and to the intersection of the water course layer and transport layer. For the purposes of inundation modelling, inundation contours have been developed using the HDEM. The inundation extents were extracted at 0.2m intervals below 2m AHD and 1m intervals up to 10m. The inundation contours are available as polylines. The inundation contours have also been flagged as to whether the area connects directly to the sea. he data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing.

  • Elevation data and products such as Digital Elevation Models derived from these data comprise an essential layer within the National Spatial Data Infrastructure. Historically the creation of these datasets has been the domain of National and State mapping agencies. However, in recent years the rapid development of survey technologies and industry capability, the need for high resolution elevation data to meet a range of purposes, and the nature of government funding arrangements has resulted in significant project-based investment.

  • This record has been created for Sales to be able to invoice data requests that occur from downloading of data from the National Elevation Data Framework (NEDF) Web Portal. The Portal was set up in 2010 and data more than 400MB needs to be downloaded from the holding pen on the NEDF server and copied onto media and sent to the requester. Each data request will come with metadata and the appropriate data licence.