From 1 - 10 / 139
  • Physical and biological characteristics of benthic communities are analysed from underwater video footage collected across the George V Shelf during the 2007/2008 CEAMARC voyage. Benthic habitats are strongly structured by physical processes operating over a range of temporal and spatial scales. Iceberg scouring recurs over timescales of years to centuries along shallower parts of the shelf, creating communities in various stages of maturity and recolonisation. Upwelling of modified circumpolar deep water (MCDW) onto the outer shelf, and cross-shelf flow of high salinity shelf water (HSSW) create spatial contrasts in nutrient and sediment supply, which are largely reflected in the distribution of deposit and filter feeding communities. Long term cycles in the advance and retreat of icesheets (over millennial scales) and subsequent focussing of sediments in troughs such as the Mertz Drift create patches of consolidated and soft sediments, which also provide distinct habitats for colonisation by different biota. These physical processes of iceberg scouring, current regimes and depositional environments, in addition to water depth, are shown to be important factors in the structure of benthic communities across the George V Shelf. The modern shelf communities mapped in this study largely represent colonisation over the past 8-12ka, following retreat of the icesheet and glaciers at the end of the last glaciation (Harris et al., 2001; Ingólfsson et al., 1998). Recolonisation on this shelf may have occurred from two sources: deep-sea environments, and possible shelf refugia on the Mertz and Adélie Banks. However, any open shelf area would have been subject to intense iceberg scouring (Beaman and Harris, 2003). Understanding the timescales over which shelf communities have evolved and the physical factors which shape them, will allow better prediction of the distribution of Antarctic shelf communities and their vulnerability to change. This knowledge can aid better management regimes for the Antarctic margin.

  • Prydz Bay and the Mac.Robertson Land Shelf exhibit many of the variations seen on Antarctic continental shelves. The Mac.Robertson Shelf is relatively narrow with rugged inner shelf topography and shalow outer banks swept by the west-flowing Antarctic Coastal Current. U-shaped valleys cut the shelf. it has thin sedimentary cover deposited and eroded by cycles of glacial advance and retreat through the Neogene and Quaternary. Modern sedimention is diatom-rich Siliceosu Muddy OOze in shelf deeps while on the banks, phytodetritus, calcareous bioclasts and terrigenous material are mixed by iceberg ploughing. Prydz Bay is a large embayment fed by the Amery Ice Shelf. it has a broad inner shelf deep and outer bank with depths ranging from 2400 m beneath the ice shelf to 100 m on the outer bank. A clockwise gyre flows through the bay. Fine mud and siliceous ooze drapes the sea floor however banks are scoured by icebergs to depths of 500 m.

  • Map showing Australia's Maritime Jurisdiction off the eastern portion of the Australian Antarctic Territory. One of the 27 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71789). Depicting Australia's extended continental shelf approved by the Commission on the Limits of the Continental Shelf in April 2008 and various maritime zones. Background bathymetric image is derived from a grid by Smith and Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. A0 sized .pdf downloadable from the web.

  • This map was created by GA for the purposes of seeking clarifications with AIMS and DFAT for survey work in the Timor Sea. A base map product was modified for the purpose.

  • The Marine Science Voyage (2010/11 VMS) to the Mertz Glacier region was a collaborative survey involving scientists from a number of research institutions, working across a number of different projects, with the overall aim of conducting a coordinated and comprehensive study to measure and monitor the impact of the Mertz Glacier calving event on the local and regional environment. The survey took place in January 2011 and enabled the collection of data shortly after the calving event so that physical, chemical and biological changes in response to the new conditions can be monitored over time. As such, data collected on VMS will provide a benchmark for tracking future change in the Mertz Glacier region environment. Geoscience Australia and the Australian Antarctic Division conducted a benthic community survey during the voyage. The purpose of the benthic community survey was to collect high-resolution still images of the sea floor to address three main objectives: 1. to investigate benthic community composition in the area previously covered by the MGT and to the east, an area previously covered by approximately 30 m of fast ice; 2. to investigate benthic community composition (or lack thereof) in areas of known iceberg scours; and 3. to investigate the lateral extent of hydrocoral communities along the shelf break. The survey collected over 1800 images of the sea floor on the continental shelf and slope in the Mertz Glacier region, including in the area previously covered by the Mertz Glacier tongue. There were 75 successful camera deployments and a further 7 stations where images were of poor quality but may still provide useful information. The benthic images will be examined in detail to provide information on benthic community composition and substrate type. The survey has provided a major new set of data which will greatly enhance the understanding of Antarctic marine biodiversity and the relationship between physical conditions and benthic communities.

  • Map showing all of Australia's Maritime Jurisdiction north of approx 25°S . This includes areas around Cocos (Keeling) Islands and areas west of Christmas Island as well as those contiguous to the continent in the north. Included as one of the now 28 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71789). Depicting Australia's extended continental shelf approved by the Commission on the Limits of the Continental Shelf in April 2008, treaties and various maritime zones. Background bathymetry image is derived from a combination of the 2009 9 arc second bathymetry and topographic grid by Geoscience Australia and a grid by W.H.F. Smith and D.T. Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. 3277mm x 1050mm (for 42" plotter) sized .pdf downloadable from the web.

  • The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.

  • Description of sampling and data acquisition activites carried out by Geoscience Australia staff as part of an Australian Antarctic Division survey to the George V Land margin, Antarctica. The survey was part of the Census of Antarctic Marine Life Project.

  • Dense hydrocoral-sponge communities have been identified on the upper continental slope of George V Land, East Antarctica and declared Vulnerable Marine Ecosystems. Analysis of physical and biological datasets collected during the 2007/08 CEAMARC survey identified that the richest communities are found in the heads of canyons which receive Antarctic Bottom Water formed on the George V shelf, and the canyons harbouring rich benthos are also those that cut the shelf break. This led to several hypotheses regarding their distribution and three main factors were identified. These hypotheses were tested during a recent marine science voyage in January 2011 to the same region. Initial analysis of the new data supports the hypotheses regarding the physical controls on hydrocoral-sponge community distribution.

  • This short compilation is a 3D Bathymetric flythrough starting from Exmouth to Fremantle and through the Perth Canyon. Also showing the Houtman, Mentell, Wallaby Plateau, canyons and new volcanoes. This short compilation movie will be incorporated into a PowerPoint presentation to be shown at IUGG 2011. It is in 4:3 format. The 3D flythrough footage was originally created for 08-3476 movie - South West Marine Margin, March 2010.