Marine Biodiversity Hub
Type of resources
Keywords
Publication year
Topics
-
<p>Bathymetry flythrough of Perth Canyon using data acquired by Schmidt Ocean Institute in 2015 on RV Falkor (University of Western Australia et al.). The flythrough highlights geomorphic features mapped by Geoscience Australia, including landslides, escarpments and bedform fields and biodiversity associated with the canyon (benthic and pelagic). Produced as a science communication product for the Marine Biodiversity Hub (National Environmental Science Program). <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
<p>The dataset indicates the long-term overall primary productivity hotspots of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and August 2014 are used to identify the overall primary productivity hotspots. The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The value (between 0 and 1.0) of the dataset represents the likelihood of the location being a primary productivity hotspot. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
<p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Bathymetry grids <p>The bathymetry of the marine parks was created by compiling and processing Geoscience Australia’s bathymetry data holding gridded at the optimum resolution depending of the vessel’s sonar system. <p>The bathymetry of the park is illustrated by a panchromatic geotiff image, developed by combining the bathymetric data with a hillshade image. <p> Morphological Surfaces <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.<p><p>This dataset is not to be used for navigational purposes.
-
<p>This dataset measures the overall warming rates of the sea surface temperature (SST) in 58 Australian Marine Parks (except the Heard Island and McDonald Islands Marine Park) over the past 15 years (2003 to 2017). They are derived from the monthly MODIS (aqua) SST images. The fields of "slope_y" and "slope_m" represent the annual and monthly SST warming rates, respectively. The units of the warming rates are Celsius degree/per annual and Celsius degree/per month. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
<p>The dataset indicates the seasonal primary productivity hotspots of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and August 2014 are used to identify the primary productivity hotspots of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The value (between 0 and 1.0) of the dataset represents the likelihood of the location being a primary productivity hotspot. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
<p>Flythrough movie of Bremer Commonwealth Marine Reserve, southwest Western Australia showing bathymetry of Bremer Canyon, Hood Canyon, Henry Canyon and Knob canyon. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
<p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Bathymetry grids: <p>The bathymetry of the marine parks was created by compiling and processing Geoscience Australia’s bathymetry data holding gridded at the optimum resolution depending of the vessel’s sonar system. <p>The bathymetry of the park is illustrated by a panchromatic geotiff image, developed by combining the bathymetric data with a hillshade image. <p> Morphological Surfaces: <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.<p><p>This dataset is not to be used for navigational purposes.
-
<p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). This classification was applied to the portion of the Beaman and Spinnocia (2018) 30 m grid within the Kimberley Marine Park. <p>This research is supported by the National Environmental Research Program Marine Biodiversity Hub through Project D1. <p>Beaman, R.J. and Spinoccia, M. (2018). High-resolution depth model for Northern Australia - 30 m. Geoscience Australia. <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages.
-
<p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). This classification was applied to the portion of the Beaman and Spinnocia (2018) 30 m grid within the marine park. <p>Beaman, R.J. and Spinoccia, M. (2018). High-resolution depth model for Northern Australia - 30 m. Geoscience Australia. <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
<p>This dataset contains identifications of polychaetes collected during surveys on the RV Solander in northern Australia: SOL4934 (27 August-24 September, 2009) , SOL5117 (30 July-27 August, 2010), SOL5463 (3-31 May 2012), and SOL5650 (12 September-6 October 2012). Sediment was collected with a Smith McIntyre grab or boxcore and elutriated over a 500um sieve. Elutriated material was then sorted back at Geoscience Australia, and all polychaetes were removed and sent to the Museum and Art Gallery of the Northern Territory (MAGNT). Chris Glasby and Charlotte Watson taxonomically identified each animal to the lowest possible level, differentiating species using established names and operational taxonomic units (OTUs). Specimens are lodged at the MAGNT. See relevant post-survey reports (GA Records 2010/09, 2011/08, 2012/66 and 2013/38) for further details on survey methods and specimen acquisition. This dataset is published with the permission of the CEO, Geoscience Australia. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.