From 1 - 10 / 256
  • Long-period magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, the identification of which is an important element of several mineral system models. Given the importance of these data, governments and academia have united under the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to collect long-period MT data across the continent on a ~55 km-spaced grid. Here, we use AusLAMP data to demonstrate the MT method as a regional-scale tool to identify and select prospective areas for mineral exploration undercover. We focus on the region between Tennant Creek in the Northern Territory and east of Mount Isa in Queensland. Our results image major conductive structures up to 150 km deep in the lithosphere, such as the Carpentaria Conductivity Anomaly east of Mount Isa. This anomaly is a significant lithospheric-scale conductivity structure that shows spatial correlations with a major suture zone and known iron oxide–copper–gold deposits. Our results also identify similar features in several under-explored areas that are now considered to be prospective for mineral discovery. These observations provide a powerful means of selecting frontier regions for mineral exploration undercover.. <b>Citation:</b> Duan, J., Kyi, D., Jiang, W. and Costelloe, M., 2020. AusLAMP: imaging the Australian lithosphere for resource potential, an example from northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Waukarlycarly 1 is a stratigraphic well drilled in the southern part of the Canning Basin’s Waukarlycarly Embayment under Geoscience Australia’s Exploring for the Future program in collaboration with the Geological Survey of Western Australia to provide stratigraphic data for this poorly understood tectonic component. The well intersects a thin Cenozoic section, overlying Permian–Carboniferous fluvial clastics and glacial diamictites, with a thick pre-Carboniferous succession (855–2585 mRT) unconformably overlying the Neoproterozoic metasediments. Three informal siliciclastic intervals were defined based on the data from core lithology, well logs, fluid inclusions, chemical and mineral compositions; an Upper Sandstone (855–1348.1 mRT), a Middle Interval (1348.1–2443.4 mRT) and a Lower Sandstone (2443.4 –2585 mRT). The Middle Interval was further divided into six internal zones. Conventional methods were applied to interpret effective porosity, water saturation and elastic properties (Poisson’s ratio and Young’s modulus). Artificial neural network technology was employed on well logs to interpret the total organic carbon (TOC) content, pyrolysis products from the cracking of organic matter (S2), permeability, and mineral compositions. In the Upper Sandstone, average sandstone porosity and permeability are 17.9% and 464.5 mD and, 6.75 % and 10 mD in the Lower Sandstone. The Middle Interval claystone has an average porosity and permeability of 4.17 % and 0.006 mD, and average TOC content and S2 of 0.17 wt% and 0.047 mg HC/g rock with maximum values of 0.66 wt% and 0.46 mg HC/g rock. Average Poisson’s ratio and Young’s modulus of the claystone are 0.154 and 9.81 GPa. Correlations of mineral compositions, petrophysical, geomechanical and geochemical properties of the Middle Interval have been conducted. Young’s modulus and Poisson’s ratio are well correlated with the contents of key minerals, including Quartz, carbonates and TotalClay. Although TOC content is low at Waukarlycarly 1, hydrocarbon generation and migration have occurred elsewhere in the Waukarlycarly Embayment. The helium response just above the Neoproterozoic basement in the FIS profile is not associated with the hydrocarbon responses implying that these fluids have different sources.

  • Geoscience Australia’s Exploring for the Future Program is investigating the mineral, energy and groundwater resource potential of sedimentary basins and basement provinces in northern Australia and parts of South Australia. A key challenge in exploring Australian onshore sedimentary basins is that these are often areas with limited seismic data coverage to image the sub-surface structural and stratigraphic architecture. Consequently, well logs are often the main data sets that are used to understand the sub-surface geology. Where good seismic data coverage is available, a considerable amount of time is generally required to undertake an integrated interpretation of well and seismic data. The primary aim of this study is to develop a methodology for visualising the three-dimensional tectonostratigraphic architecture of sedimentary basins using just well data, which can then be used to quickly screen areas warranting more detailed studies of resource potential. A workflow is documented which generates three-dimensional well correlations using just well formation tops to visualise the regional structural and stratigraphic architecture of the Amadeus, Canning, Officer and Georgina basins in the Centralian Superbasin. A critical step in the workflow is defining regionally correlatable supersequences that show the spatial linkages and evolution through time of lithostratigraphic units from different basin areas. Thirteen supersequences are defined for the Centralian Superbasin, which were deposited during periods of regional subsidence associated with regional tectonic events. Regional three-dimensional correlation diagrams have been generated to show the spatial distribution of these supersequences, which can be used as a reconnaissance tool for visualising the distribution of key stratigraphic elements associated with petroleum, mineral and groundwater systems. Three-dimensional well correlations are used in this study to redefine the Centralian Superbasin as encompassing all western, northern and central Australian basins that had interconnected depositional systems driven by regional subsidence during one or more regional tectonic events between the Neoproterozoic and middle Carboniferous. The Centralian Superbasin began to form during a series of Neoproterozoic rift-sag events associated with the break-up of the Rodinia Supercontinent at about 830 Ma. Depositional systems in the Amadeus and Officer basins were partially disconnected by an emergent Musgrave Province during these early stages of superbasin evolution. Subsequent regional uplift and erosion of the superbasin occurred during the late Neoproterozoic–early Cambrian Petermann Orogeny. The Officer and Amadeus were permanently disconnected by the uplifted Musgrave Province following this major orogenic event. Rejuvenation of the Centralian Superbasin occurred during middle–late Cambrian extension and subsidence resulting in the generation of several new basins including the Canning Basin. Subsidence during the Ordovician Larapinta Event created an intracontinental seaway that episodically connected the Canning, Amadeus, Georgina and Officer basins to the proto-Pacific Ocean in the east. Fragmentation of the Centralian Superbasin began at the onset of the Alice Springs Orogeny during the Rodingan Event when the uplifted Arunta Region disconnected the Amadeus and Georgina basins. The Rodingan Movement initially disconnected depositional systems between the Canning and Amadeus basins, which promoted the development of a large evaporitic depocentre over the southern Canning Basin. However, these basins subsequently reconnected during the Early Devonian Prices Creek Movement. Complete fragmentation of the Centralian Superbasin occurred during the Late Devonian–middle Carboniferous Pillara Extension Event when the Canning and Amadeus basins became permanently disconnected. Widespread uplift and erosion at the culmination of the Alice Springs Orogeny in the middle Carboniferous resulted in final closure of the Centralian Superbasin.

  • Geoscience Australia, in collaboration with state government agencies, has been collecting magnetotelluric (MT) data as part of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) for several years. This program aims to map the electrical resistivity of the rock layers, at depths from ten kilometres to hundreds of kilometres, across the entire continent. AusLAMP sites are each about 55 km apart from each other. Locations are chosen in consultation with landholders and other stakeholders to minimise impacts and avoid disturbance.MT data is collected using sensors that record naturally occurring variations of the Earth’s magnetic and electric fields. The equipment does not produce or transmit and signals. After four to six weeks the equipment is retrieved and the site restored to its original condition.

  • The AusArray program aims to install small temporary passive seismic stations every 200 km across Australia. The seismic stations will passively measure small natural vibrations that travel through the Earth to help scientists understand the distribution and composition of rocks beneath the ground. Seismometers are sensitive instruments used to measure small natural vibrations that travel through the Earth caused by earthquakes, waves breaking on the shore and even wind. The data collected are analysed to create a three-dimensional model of the Earth’s subsurface. Passive seismic data can be used to model the Earth‘s structure, which is used to infer the geological history and assess the resource potential and natural hazards of the region.

  • As part of the Exploring for the Future program, whole-of-crust 3D gravity and magnetic inversion models have been produced for an area encompassing the North Australia Craton. These models were created to aid 3D geological mapping and identification of large-scale mineral systems such as those associated with iron oxide copper-gold deposits. The inversion models were derived using the University of British Columbia - Geophysical Inversion Facility MAG3D and GRAV3D programs. The inversions were constrained with geological reference models that had layers for Phanerozoic sediments, Proterozoic sediments, undifferentiated crust and the mantle. The reference model for the magnetic inversion incorporated a Curie depth surface below which magnetic susceptibility was set to zero. To allow cross-referencing, both the density and magnetic susceptibility models were designed to occupy the same physical space with identical volumes and cell sizes. A horizontal cell size of 1 km was used with 61 vertical layers, whose thickness increased with depth. The area of interest is 2450 km by 1600 km and extends to a depth of 70 km below the geoid, resulting in a total volume with ~239 million cells. Ultimately, it was not possible to invert a model of this size. Instead, the volume was broken down into a grid of overlapping tiles with 8 rows and 10 columns. Each tile was independently inverted before being recombined into a single coherent output model. When the overall model was reconstructed using the core region of each tile, some low-level edge effects were observed, increasing in significance with depth. These effects were satisfactorily attenuated by applying cosine weighting from the centre of each tile out to the edge of the overlap region during reconstruction. The coincident density and magnetic susceptibility models show a relationship with known iron oxide copper-gold deposits and regions of >2.80 g/cm3 and >0.01 SI in the Tennant Creek and Cloncurry regions. It is suggested that these regions of high-density and high-magnetic susceptibility are related to the magnetite-forming hydrothermal alteration stages of an iron oxide copper-gold deposit. The success of the NAC modelling exercise has demonstrated that this method can be expanded to produce coincident gravity and magnetic inversion models for the entire Australian region. ------------------------------------------------------------------------------------------ DOWNLOADS ------------------------------------------------------------------------------------------ Input Data: The input gravity, magnetic and elevation data (.ers and .tif). Geological Reference Models: The geological reference model as surfaces and 3D volumes (.sg, .ts, and UBCGIF). Observed vs Predicted Data: The input gravity/magnetic data compared to the predicted data (.png). Recombined Models: The recombined (cosine weighted) density and magnetic susceptibility models (.sg, and UBCGIF). Magnetite Proxies: Proxies for magnetite alteration related to IOCG deposits (.ers). Video: Video describing the method and results (.mp4).

  • The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. As part of the Exploring for the Future program, this study aims to improve our understanding of the petroleum resource potential of northern Australia. This data release presents new field emission scanning electron microscopy (FE-SEM) of broad ion beam- polished samples (BIB-SEM) to visualise mineral and organic matter (OM) porosity on 15 Proterozoic aged shales. Samples were selected from the Velkerri and Barney Creek formations in the McArthur Basin and the Mullera Formation, Riversleigh Siltstone, Lawn Hill and Termite Range formations in the South Nicholson region. Qualitative maceral analysis of the 15 samples are described in addition to bitumen reflectance measurements. These samples were analysed at the Montanuniversität Leoben, Austria in June 2020. The results of this study can be used to improve our understanding of porosity, microstructures, seal capacity and hydrocarbon prospectivity of Proterozoic aged sedimentary basins in northern Australia.

  • This report presents key results of the Ti Tree Basin study completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. As part of EFTF, Geoscience Australia undertook an assessment of available and new hydrochemical data collected in the Ti Tree Basin, Northern Territory. The basin is one of the four water control districts within the Southern Stuart Corridor Project area. Communities, irrigation farms and pastoral stations in the basin rely on groundwater, and extensive groundwater sampling and hydrochemical investigations have been undertaken over the past 50 years. An opportunity was recognised to collate and interpret the existing data, supplemented by new EFTF data, not only to add value to the understanding of groundwater processes in the basin itself but also to provide a useful knowledge base for other groundwater resources in the region that are poorly understood. This study largely relied on the available groundwater analysis data from the Northern Territory Department of Environment and Natural Resources database, supplemented by publicly available analyses from other sampling campaigns, including the EFTF, totaling 1913 groundwater samples across the district. The key findings of the study are: • The hydrochemistry data, particularly on salinity (total dissolved solids (TDS)), ion ratios (e.g. HCO3/Cl, Cl/(Cl+HCO3), Cl/(Cl+HCO3+SO4), Na/Cl) and radiocarbon (14C) could be used to map the three major recharge areas for the basin—the floodout of the Woodforde River to the west, the floodout of Allungra Creek in the basin centre, and the eastern basin margin. This is consistent with the current accepted interpretation that recharge is dominated by episodic run-on and infiltration in drainage floodout areas, driven by intense rainfall events that generate runoff in upland basement headwaters and ephemeral flows in basin creeks. There are no hydrochemical indicators of recharge in the vicinity of the channelised reaches of the basin creeks (i.e. both Woodforde River and Allungra Creek), located upstream of the floodouts. • From a groundwater resource perspective, the Allungra Creek floodout has broadly the best combination of low-salinity groundwater (median TDS = 740 mg/L) and bore yield statistics (median = 10 L/s). The Woodforde River floodout also has areas with high-yielding bores (>10 L/s) of fresh groundwater (<1000 mg/L), with the borehole distribution suggesting that the fresh groundwater resource is significantly more extensive to the west of the river than that previously mapped. The eastern basin margin generally has low-salinity groundwater (median TDS = 775 mg/L) but lower bore yields (median = 4.4 L/s). • There are differences in the recharge characteristics of the three floodout areas, due to differences in drainage catchments and floodout hydrogeology. The Woodforde River floodout has the most depleted stable isotopes, interpreted to be due to a higher rainfall/runoff threshold for recharge (>150 mm/month). It also has the largest isotopic range and the best δ18O-δ2H linear regression, suggesting the most influence of evaporation, such as a longer period of surface water ponding. In comparison, the stable isotope signature for Allungra Creek groundwaters suggests a lower rainfall/runoff threshold for recharge (>100 mm/month) and low evaporative influence, hence relatively rapid infiltration. This is also inferred to be the case for the low-salinity eastern basin margin groundwaters. For both Woodforde River and Allungra Creek, modern recharge is indicated by groundwaters with high radiocarbon activity (14C percent modern carbon (pMC) >70). For the eastern basin margin, radiocarbon activity is low to moderate (14C pMC 20–50). This is interpreted to reflect a longer travel time in the unsaturated zone. • In the floodout areas, the dominant hydrogeochemical process relating to the fresh groundwater is water–rock interactions. Groundwater tends to be the least evolved Ca(Mg)-HCO3 or transitional Na(K)-HCO3 water type, according to Chadha plots. Zones of prevalence of carbonate-gypsum dissolution or Na-silicate weathering could be mapped using indicators such as cation chloride ratio. Ion exchange is also a likely process in these fresh groundwaters, as inferred from chloro-alkaline indices. • Groundwater salinity is higher away from the floodout areas. This increased salinity is due to evapotranspirative concentration in addition to water–rock interactions, as inferred from ion ratios, including Cl/Br. Stable isotopes indicate that transpiration of groundwater by vegetation accessing the watertable, rather than direct evaporation, is the dominant process in these areas. This process is particularly evident in the Wilora Palaeochannel, the northern extension of the basin, which generally has the highest groundwater salinities (median TDS = 1575 mg/L), the lowest bore yields (median = 1.9 L/s) and the greatest prevalence of shallow watertables (<15 m). With higher salinities, groundwaters tend to be the evolved Ca(Mg)-Cl(SO4) and Na(K)-Cl(SO4) water types and potentially influenced by reverse ion exchange processes. • Mountain-front recharge has previously been proposed as an additional recharge mechanism, notably near the southern basin margin. Although sampling is limited in this area, hydrochemical indicators such as low HCO3/Cl, high Na/Cl and evolved Na(K)-Cl(SO4) water type suggests that active recharge is not significant. The watertable is deep along the southern basin margin (>50 m), so groundwater chemistry can be strongly influenced by processes during downward infiltration through a thick unsaturated zone. • Limited sampling of deeper bores (>80 m), potentially in the Hale Formation, generally have the characteristics of being more saline and lower yielding compared to bores in the shallow groundwater resource (particularly from 40 m to 80 m). However, there are deep bores with good yields of fresh groundwater; of 57 bores in the basin with interval depths exceeding 80 m, eight (14%) have the combination of yield >5 L/s and salinity <1000 mg/L. The deeper groundwaters are typically Ca(Mg)-Cl(SO4) and Na(K)-Cl(SO4) water types, with the latter, more evolved, water type dominating at depths >120 m. There are very few stable isotope analyses for the deeper groundwaters, but these are within the isotopic range for the shallow groundwaters in the same area, suggesting similarity in recharge processes and a degree of aquifer connectivity. Likewise, there are very few radiocarbon analyses for deeper groundwaters (depth >60 m), but these consistently show low 14C activity (pMC <40). The higher salinities, evolved water types and low 14C activity reflect longer residence times in the deeper groundwater system. The study highlighted that floodout recharge, involving episodic flow of basin creeks from headwater catchments, is the most dominant mechanism, rather than direct infiltration from large rainfall events. The study also identified that recharge characteristics, particularly the rainfall threshold for effective recharge and the role of evaporation, are not consistent across the floodout zones in the basin. This likely reflects differences in upland catchment size and geology, as well as floodout landform and hydrogeology. The study also highlighted the importance of groundwater-dependent vegetation in the basin, with dominance of transpiration of groundwater rather than direct evaporation. The groundwater hydrochemistry datasets and interpretation maps can support informed water management decisions within the basin. For example, improved understanding of the spatial and temporal distribution of recharge is not only needed for defining groundwater extraction limits but also used in strategies such as managed aquifer recharge. The EFTF work adds to the knowledge base and datasets that have developed over decades for the Ti Tree Basin, which are also valuable assets for broader understanding of groundwater resources in central Australia.

  • This Record documents the efforts of the Geological Survey of Victoria (GSV) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Victoria, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This dataset, which was primarily compiled by GSV and has been supplemented with data compiled by GA during the 2013–2017 Stavely Project, is a foundation for the second phase of the Exploring for the Future initiative over 2020–2024, particularly the Darling-Curnamona-Delamerian Project.

  • Crustal architecture places first-order controls on the distribution of mineral and energy resources. However, despite its importance, it is poorly constrained over much of northern Australia. Here, we present a full crustal interpretation of deep seismic reflection profile 18GA-KB1 that extends over 872 km from the Eo- to Mesoarchean Pilbara Craton to the Paleoproterozoic Aileron Province, transecting a range of stratigraphic and tectonic basement units, some of which are completely concealed by younger rocks. The seismic profile provides the first coherent image through this relatively poorly understood part of Australian geology and yields major new insights about the crustal architecture, geometry and definition of the different geological and seismic provinces and their boundaries. Key findings include the following: (1) The Pilbara Craton shows a three-component horizontal crustal layering, where the granite– greenstone East Pilbara Terrane is largely confined to the upper crust. (2) The Pilbara Craton has an extensive reworked margin, the Warrawagine Seismic Province, that thins towards the east, and underlies the western and central Rudall Province. (3) At the largest scale, the Rudall Province shows an approximately funnel-shaped geometry, with limited differences in seismic character between the various terranes. (4) The western Kidson Sub-basin is underlain by rocks of the Neoproterozoic Yeneena Basin and Rudall Province. (5) The central and eastern part of the Kidson Sub-basin rests on the coherent, relatively poorly structured Punmu Seismic Province, which is truncated by the steep, crustal-scale Lasseter Shear Zone, that marks the boundary to the Aileron Province to the east. <b>Citation:</b> Doublier, M.P., Johnson, S.P., Gessner, K., Howard, H., Chopping, R., Smithies, R.H., Martin, D.McB.,Kelsey, D.E., Haines, P.w., Hickman, A., Czarnota, K., Southby, C., Champion, D.C., Huston, D.L., Calvert, A.J., Kohanpour, F., Moro, P., Costelloe, R., Fomin, T. and Kennett, B.L.N., 2020. Basement architecture from the Pilbara Craton to the Aileron Province: new insights from deep seismic reflection line 18GA-KB1. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.