Exploring for the Future
Type of resources
Keywords
Publication year
Service types
Topics
-
The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.
-
This report presents groundwater levels results from the East Kimberley groundwater project in the Northern Territory (NT), conducted as part of Exploring for the Future (EFTF), an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The East Kimberley groundwater project is a collaborative study between Geoscience Australia and State and Territory partners. It focuses on groundwater resources in the Keep River Plains of the NT. This report describes a data release of groundwater levels based on measurements collected in monitoring bores during the EFTF project. The full report includes: • A full description of how water levels in metres relative to Australian Height Datum (m AHD; where zero m AHD is an approximation of mean sea level) were calculated from manual dips and electronic data loggers for this project. • A series of tables in Appendix A containing sufficient information for each bore and datalogger file to reproduce the water levels reported in Appendix B and Appendix C. • A series of hydrographs in Appendix B showing how water levels (in m AHD) interpreted from manual dips and datalogger files varied during the EFTF project. • A series of electronic files in Appendix C that include - Data files from dataloggers in CSV file format that can be used with the information contained in this data release to regenerate the water levels shown on hydrographs in Appendix A. - Data files in CSV file format reporting the final water levels used to generate the hydrographs in Appendix B.
-
Barnicarndy 1 is a stratigraphic well drilled in the southern part of the Canning Basin’s Barnicarndy Graben under Geoscience Australia’s Exploring for the Future program in collaboration with the Geological Survey of Western Australia to provide stratigraphic data for this poorly understood tectonic component. The well intersects a thin Cenozoic section, Permian–Carboniferous fluvial clastics and glacial diamictites and a thick pre-Carboniferous succession (855–2585 mRT) unconformably overlying Neoproterozoic metasedimentary rocks. Three informal siliciclastic intervals were defined based on core lithology, well logs, chemical and mineral compositions: the Upper Sandstone (855–1348.1 mRT), Middle Interval (1348.1–2443.4 mRT) and Lower Sandstone (2443.4–2585 mRT). The Middle Interval was further divided into six internal zones. Both conventional methods and artificial neural network technology were applied to well logs to interpret petrophysical and elastic properties, total organic carbon (TOC) content, pyrolysis products from the cracking of organic matter (S2) and mineral compositions. Average sandstone porosity and reservoir permeability are 17.9% and 464.5 mD in the Upper Sandstone and 6.75% and 10 mD in the Lower Sandstone. The Middle Interval claystone has an average porosity and permeability of 4.17% and 0.006 mD, and average TOC content and S2 value of 0.17 wt% and 0.047 mg HC/g rock, with maximum values of 0.66 wt% and 0.46 mg HC/g rock, respectively. Correlations of mineral compositions and petrophysical, geomechanical and organic geochemical properties of the Middle Interval have been conducted and demonstrate that these sediments are organically lean and lie within the oil and gas window. Published in The APPEA Journal 2021 <b>Citation:</b> Wang Liuqi, Edwards Dianne S., Bailey Adam, Carr Lidena K., Boreham Chris J., Grosjean Emmanuelle, Normore Leon, Anderson Jade, Jarrett Amber J. M., MacFarlane Susannah, Southby Chris, Carson Chris, Khider Kamal, Henson Paul, Haines Peter, Walker Mike (2021) Petrophysical and geochemical interpretations of well logs from the pre-Carboniferous succession in Barnicarndy 1, Canning Basin, Western Australia. <i>The APPEA Journal</i><b> 61</b>, 253-270. https://doi.org/10.1071/AJ20038
-
Geoscience Australia has undertaken a series of integrated studies to identify prospective regions of mineral potential using new geological, geophysical and geochemical data from the Exploring for the Future (EFTF) program, together with legacy datasets. The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey, which aims to acquire long-period magnetotelluric (MT) data on a half-degree grid spacing (~55 km) across the entire Australian continent. The resistivity model derived from the newly-acquired AusLAMP data has mapped deep lithospheric-scale conductivity anomalies in highly endowed mineralised regions and in greenfield regions where mineralisation was not previously recognised. For example, the model reveals a conductivity anomaly extending from the Tennant Region to the Murphy Province, representing a potential fertile source region for mineral systems. This conductive feature coincides with a broadly northeast-southwest-trending corridor marked by a series of large-scale structures identified from preliminary interpretation of seismic reflection and potential field data. This under-explored region, referred to as East Tennant, is, therefore, considered to have significant mineral potential. We undertook a higher-resolution magnetotellurics survey to investigate if the deep conductivity anomaly is linked to the near surface by crustal-scale fluid pathways. Broadband MT (BBMT) and audio-MT (AMT) data were acquired at 131 stations with station spacing of ~2 km to ~15 km in an area of approximately 90 km x 100 km. The 3D resistivity model revealed two prominent conductors in the resistive host whose combined responses result in the lithospheric-scale conductivity anomaly mapped in the AusLAMP model. The resistivity contrasts coincide with major structures preliminarily interpreted from seismic reflection and potential field data. Most importantly, the conductive structures extend from the lower crust to the near surface. This observation strongly suggests that the major faults in this region are deep-penetrating structures that potentially acted as pathways for transporting metalliferous fluids to the upper crust where they could form mineral deposits. This result indicates high mineral prospectivity for iron oxide copper–gold deposits in the vicinity of these major faults. We then used AMT data to constrain cover thickness to select targets at drillable depths for the stratigraphic drilling program which, in turn, will test the models and improve our understanding of basement geology, cover sequences and mineral potential. This study demonstrates that integration of geophysical data from multiscale surveys is an effective approach to scale reduction during mineral exploration in covered terranes with limited geological knowledge. This Abstract was submitted/presented to the 2021 Australasian Exploration Geoscience Conference 13 - 17 September https://2021.aegc.com.au/.
-
Proterozoic rocks of the South Nicholson region are juxtaposed between the Mount Isa Province and the McArthur Basin. Whereas the latter two provinces are well-studied and prospective for energy and mineral resources, the geological evolution and resource potential of the South Nicholson region is not well understood. Geoscience Australia, under the Exploring for the Future (EFTF) initiative, in collaboration with State and Territory Geological Surveys, conducted a range of regional geoscience investigations to better understand the resource potential across the South Nicholson region to encourage greenfield resource exploration. Here we discuss preliminary findings on an unreported massive manganese oxide (MnO) occurrence in the Carrara Range in the South Nicholson region, north-eastern Northern Territory. The occurrence is hosted by a north-dipping quartz sandstone unit of the ca. 1640 Ma) sandstones of the Plain Creek Formation (McNamara Group), in the hanging wall of the south-verging, east-west trending Wild Cow Fault zone. The Plain Creek Formation conformably overlies the Shady Bore Quartzite, and conformably underlies shales and carbonaceous siltstones of the Lawn Hill Formation. The Plain Creek Formation is stratigraphically equivalent to the Riversleigh Siltstone in the Lawn Hill Platform. The massive MnO body is comprised of pyrolusite (MnO2) and cryptomelane (KMn8O16), surrounded by a halo of partially MnO altered host sandstone, crosscut by numerous 1‒5mm wide ‘feeder’ veinlets. These zoned veinlets consist of quartz, pyrolusite and cryptomelane with wall quartz projecting into the veinlets with Mn minerals infilling the centre of the veins. The MnO body is ~20 m wide across strike. The lateral and depth extent of the occurrence is unknown, but satellite imagery indicates that MnO mineralisation is visible, along strike, for at least several hundred metres. These observations suggest that the Carrara Range MnO occurrence is likely an epigenetic replacement stratiform body. Geochemistry on the MnO body return 49.8 wt% MnO with appreciable (ca. 450 ppm) Zn; the host sandstone return 10.8 wt% MnO and ca. 25 ppm Zn. Reconnaissance fluid inclusion analysis on quartz-MnO veinlets reveals both brine+vapour aqueous inclusions and hydrocarbon+vapour inclusions. Co-existing aqueous and hydrocarbon were not observed. Homogenisation temperatures are 90‒180°C for aqueous inclusions and 60‒140°C for hydrocarbon inclusions. Fluid salinities are 10‒23 wt% (NaCl equivalent), which may suggest interaction with evaporites. Decrepitation of the fluid inclusions yielded CO2 with no accompanying hydrocarbon gases, suggesting an oxidising fluid. The 𝛿13C CO2 of -22 ‰ is consistent with an organic source, possibly from oil oxidation. The mineralising fluids were high salinity, low temperature (ca. 120°C) fluids, typical of fluids for Mississippi-Valley and/or Mount Isa style base-metal deposits. The host Plain Creek Formation is stratigraphically equivalent to units that host world-class regional Pb-Zn deposits such as Century, McArthur River (HYC) and Lady Loretta and others of north-western Queensland and north-eastern Northern Territory. This correlation, together with the knowledge that many Pb-Zn deposits across the region are associated with manganese enrichment, increases the potential of a base metal resource in the South Nicholson region. Discovery of the Carrara Range Mn occurrence may stimulate regional base metal exploration. Abstract presented at the 2021 Australian Earth Sciences Convention (AESC)
-
As part of the program, the Darling-Curnamona-Delamerian project is investigating the groundwater potential of the upper Darling River floodplain, as well as the mineral and groundwater potential of parts of eastern South Australia, western New South Wales, western Victoria and western Tasmania. Communities, industries and the environment in the upper Darling River region have been impacted by recent droughts. During periods of low flow in the Darling River, groundwater has the potential to be an alternative water source for towns, agriculture and mining. The aim of the Upper Darling River Floodplain Groundwater study is to identify and better understand groundwater supplies beneath the floodplain and its surrounds. When combined with innovative water storage options, these groundwater resources could provide enhanced drought security and promote regional development. The study area covers ~31,000 km2 and includes a 450 km stretch of the Darling River floodplain from Wilcannia upstream to Bourke and Brewarrina.
-
Green Steel: Synergies between the Australian Iron Ore Industry and the Production of Green Hydrogen
Green steel, produced using renewable energy and hydrogen, presents a promising avenue to decarbonize steel manufacturing and expand the hydrogen industry. Australia, endowed with abundant renewable resources and iron ore deposits, is ideally placed to support this global effort. This paper's two-step analytical approach offers the first comprehensive assessment of Australia's potential to develop green steel as a value-added export commodity. The Economic Fairways modelling reveals a strong alignment between prospective hydrogen hubs and current and future iron ore operations, enabling shared infrastructure development and first-mover advantages. By employing a site-based system optimization that integrates both wind and solar power sources, the cost of producing green steel could decrease significantly to around AU$900 per tonne by 2030 and AU$750 per tonne by 2050. Moreover, replacing 1% of global steel production would require 35 GW of well-optimized wind and solar photovoltaics, 16 GW of hydrogen electrolysers, and 1000 square kilometres of land. Sensitivity analysis further indicates that iron ore prices would exert a long-term influence on green steel prices. Overall, this study highlights the opportunities and challenges facing the Australian iron ore industry in contributing to the decarbonization of the global steel sector, underscoring the crucial role of government support in driving the growth and development of the green steel industry. <b>Citation:</b> Wang C et al., Green steel: Synergies between the Australian iron ore industry and the production of green hydrogen, <i>International Journal of Hydrogen Energy,</i> Volume 48, Issue 81, 1 October 2023, Pages 32277-32293, ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2023.05.041
-
The Mineral Potential web service provides access to digital datasets used in the assessment of mineral potential in Australia. The service includes maps showing the potential for sediment-hosted base metal mineral systems in Australia.
-
The Exploring for the Future (EFTF) Program is a multiyear, federally funded initiative to better characterise the mineral, energy and groundwater resource potential across Australia. As part of this initiative, this data record presents mineral fluid inclusion data from two sample from the South Nicholson region. The South Nicholson region straddles north-eastern Northern Territory and north-western Queensland, and prior to the EFTF program, arguably represented one of the least geologically understood regions of Proterozoic northern Australia. The South Nicholson region is situated between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland, both with demonstrated hydrocarbon and base-metal potential. These new fluid inclusion data provide information on sedimentary and volcanic rocks in the South Nicholson region that complement other components of the EFTF program, including the South Nicholson Basin and Barkly seismic surveys, comprehensive geochronology and geochemical programs, hydrocarbon prospectivity studies and other extensive regional geophysical surveys to better understand the geological evolution and basin architecture of northern Australia. The primary objective of the program is to facilitate identification of areas of unrecognised resource potential and prospectivity and encourage and stimulate ‘greenfield’ resource exploration. This record presents new fluid inclusion data from two outcrop samples: a) siliceous hydrothermal ‘white smoker’ pipes within the ca. 1660–1630 Ma Buddycurrawa Volcanics (Benmara Group, Benmara region) and b) feeder veinlets of a manganese oxide occurrence in the Carrara Range and hosted within the late Paleoproterozoic Plain Creek Formation (McNamara Group). Both samples are from the MOUNT DRUMMOND 1:250 000 map-sheet, north-eastern Northern Territory and were collected as part of EFTF helicopter-based field operations and ground mapping during May 2018.
-
<p>The South West McArthur, Barkly Gravity Survey P201901 is a gravity survey jointly funded under Geoscience Australia’s (GA) Exploring for the Future program and the Northern Territory Geological Survey's (NTGS) Resourcing the Territory 2018-2022 Initiative. Atlas Geophysics was commissioned by GA to conduct the survey, supporting both GA's and NTGS's programs. The survey supports GA's Exploring for the Future program, and NTGS's unlocking the resource potential of the Barkly Tablelands. <p>The survey infills existing 4km gravity coverage to 2km coverage. This is the second part of a larger gravity survey, the first being the East Tennant Gravity Survey P201901, NT, 2019 (eCat number 132968). Together the two surveys can be called the Tennant Creek Mount Isa (TISA) Gravity Surveys, P201901. <p>The data package consist of 3,303 gravity stations as a point located dataset and grids of the newly acquired gravity data