Exploring For The Future
Type of resources
Keywords
Publication year
Service types
Topics
-
This report presents key results from the Ti Tree Basin project completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. Hydrogeological data acquisition and interpretation in the Ti Tree Basin, Northern Territory, was undertaken by Geoscience Australia as part of the EFTF Program. Located ~150 km north of Alice Springs, the Cenozoic basin hosts regionally significant groundwater resources, relied upon by communities, irrigators and pastoralists. Although the basin has been extensively studied over several decades, critical information gaps still remain, particularly for the deep groundwater system (>80 m depth). Work combining new geophysical and hydrochemical data with pre-existing datasets has revealed a more complex basin hydrogeology. Mapping based on airborne electromagnetics (AEM) has identified complex structural controls on the distribution of the deep basin sequence, with consequences for aquifer compartmentalisation, regional groundwater flow and aquifer connectivity. The mapping also shows where the basin sediments are much thicker than previously drilled. The hydrochemical assessment highlighted the complexity in groundwater recharge mechanisms, showing that the rainfall threshold for effective recharge and the role of evaporation are not consistent across the floodout zones in the basin. The EFTF products provide guidance for future hydrogeological investigations. In particular, there is evidence from historic drilling for potentially useful groundwater resources in the underexplored deep basin sequence. The EFTF program has expanded the knowledge base and datasets for the Ti Tree Basin. Collectively, these are valuable assets not just for basin groundwater management but also for the broader understanding of groundwater resources and processes in central Australia.
-
This report presents groundwater levels results from the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. This report describes a data release of water levels measured in monitoring bores in both provinces by Geoscience Australia during the EFTF project. It includes: - A full description of how water levels in metres relative to Australian Height Datum (m AHD; where zero m AHD is an approximation of mean sea level) were calculated from manual dips and electronic dataloggers for this project. - A series of tables in Appendix A containing sufficient information for each bore and datalogger file to reproduce the water levels reported in Appendix B and Appendix C. - A series of hydrographs in Appendix B showing how water levels (in m AHD) interpreted from manual dips and datalogger files varied during the EFTF project. - A series of electronic files in Appendix C that include (i) Data files from dataloggers in CSV file format that can be used with the information contained in this data release to regenerate the water levels shown on hydrographs in Appendix B, and (ii) Data files in CSV file format reporting the final water levels used to generate the hydrographs in Appendix B. This data release report does not include hydrograph interpretation, which is undertaken in detail in: Cook, S. B. & Ransley, T. R., 2020. Exploring for the Future—Groundwater level interpretations for the McBride and Nulla basalt provinces: Upper Burdekin region, North Queensland. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/135439.
-
Communities and ecosystems along the Darling River face critical water shortages and water quality issues including high salinity and algal blooms due to a reliance on declining surface water flows, which are impacted by extraction and drought, exacerbated by increases in temperature driven by climate change. The Darling River, characterised by highly variable flows, is the primary water source for the region and our understanding of the spatial extent and character of lower salinity groundwater within the surrounding Darling Alluvium, which could provide an alternative water source, is limited. Scientific understanding of the highly variable groundwater-surface water system dynamics of the Darling River is also an integral part of the evidence base required to manage the water resources of the wider Murray-Darling Basin, which has experienced critical water shortages for domestic and agricultural consumptive use and serious ecological decline due to reduced flows. Other relevant groundwater systems in the study area include aquifers of the underlying Eromanga and Surat Basins in the north, aquifers of the Murray Basin in the south, and fractured rock aquifers of the Darling Basin in the south-central area. Understanding of connectivity between these systems and the groundwater systems within the Darling Alluvium, and surface water of the Darling River, is also limited. Here we present the findings of a desktop analysis combining previous research with new analysis on water level, hydrochemistry, and Airborne Electromagnetic depth sections. This integration suggests that basement geometry and hydrostratigraphy within the Darling Alluvium are key structural controls on surface-groundwater connectivity, and the occurrence of a saline groundwater system within the lower part of the alluvium which impacts the quality of surface water and shallow alluvial groundwater resources. Further data acquisition and integrated analysis are planned to test these relationships as part of the Upper Darling Floodplain project. <b>Citation:</b> Buckerfield S., McPherson A., Tan K. P., Kilgour P. & Buchanan S., 2022. From Upper Darling Floodplain groundwater resource assessment. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146847
-
To unlock the potential of one of the largest underexplored onshore areas in Australia, the Exploring for the Future Officer-Musgrave project is delivering a wide array of publicly available new analyses and data. The collection of new AEM data, as well as the reprocessing of existing industry acquired AEM data is expected to improve the understanding of groundwater systems in the Officer-Musgrave region. New regional scale data acquisition and analysis, including stratigraphic, petrophysical and geomechanical studies from existing wells, focus on advancing understanding of petroleum systems elements and assist the exploration and evaluation of conventional and unconventional petroleum resources. Here we provide an overview of available new datasets and insights into the stratigraphy of the Officer Basin. Further analysis is underway including well log digitisation, fluid inclusion analysis and a petrographic report on Officer Basin wells. This work is expected to further improve geological knowledge and reduce the energy exploration risk of the Officer Basin, a key focus of this program. <b>Citation: </b>Carr L. K., Henson P., Wang L., Bailey A., Fomin T., Boreham C., Edwards D., Southby C., Symington N., Smith M., Halas L. & Jones T, 2022. Exploring for the Future in the Officer Musgrave region. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146988
-
The Exploring for the Future program Showcase 2022 was held on 8-10 August 2022. Day 1 (8th August) included a talk on: - Exploring for the Future - The value of precompetitive geoscience - Dr Andrew Heap Showcase Day 1 https://youtu.be/M9jC_TyovCc
-
The Exploring for the Future program Showcase 2022 was held online on 8-10 August 2022. Day 3 (10th August) included talks on two themes moderated by David Robinson. Minerals, energy and groundwater systems theme: - Upper Darling Floodplain - Dr Sarah Buckerfield - Geoscience insights from Energy Resources - Lidena Carr - Mineral systems insights: New concepts from old data - Dr David Huston Resource potential theme: - Mineral Potential: Narrowing the exploration search space - Dr Arianne Ford - CO2-Enhanced oil recovery: Application to residual oil zones - Dr Aleks Kalinowski - Hydrogen and green steel - Dr Andrew Feitz You can access the recording of the talks from YouTube here: Day 3 part 1 https://youtu.be/cdzn3JNReOs Day 3 part 2 https://youtu.be/DjghAig51Ao
-
<p>Dataset "Detailed surface geology – Upper Burdekin basalt provinces", downloaded from the Queensland Spatial Catalogue in April 2017 and clipped to the Upper Burdekin basalt provinces. <p>The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in Department of Natural Resources and Mines MERLIN Database. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution
-
This grid dataset is an estimation of the relative surface potential for recharge within the Nulla Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>Reference</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688
-
Exploring for the future presentation- The structure and stratigraphy of the South Nicholson region – implications for resource prospectivity; Insight from the EFTF geochronology and deep reflection seismic programs
-
Presentation from the Exploring for the Future Roadshow on the Energy prospectivity of the South Nicholson region, regional geochemical data acquisition and shale gas prospectivity analysis.