ENVIRONMENTAL SCIENCES
Type of resources
Keywords
Publication year
Topics
-
This flythrough highlights shallow and mesophotic seabed environments of Elizabeth and Middleton Reefs, located within the Lord Howe Marine Park. These reefs are unique because they are the southern-most platform reefs in the world and host a diverse range of tropical, sub-tropical and temperate marine species. High-resolution multibeam bathymetry data and seafloor imagery used in this flythrough was acquired by the Marine Biodiversity Hub, during the period 31 January to 6 February 2020 on board the Australian Maritime College vessel, TV Bluefin. Participating agencies included Geoscience Australia, the Institute for Marine and Antarctic Studies (University of Tasmania), the Australian Centre for Field Robotics (University of Sydney) through their involvement with the Integrated Marine Observing System (IMOS), NSW Department of Primary Industries and Parks Australia. The specific aim of the survey was to fill knowledge gaps on the distribution, extent and structure of seabed habitats and associated sessile and mobile fauna in the lagoon and mesophotic shelves of Elizabeth (Recreational Use Zone) and Middleton (National Park Zone) Reefs, using a suite of national standard survey tools and best practice sampling procedures. Data acquisition for the project included seabed mapping using multibeam sonar (Kongsberg EM 2040C HD, 300 kHz), seabed imagery acquisition by Autonomous Underwater Vehicles (AUV Sirius and AUV Nimbus), sediment samples, and imagery of demersal fish communities by stereo-baited remote underwater videos (stereo-BRUVs). This work was undertaken by the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Program (NESP), and Parks Australia. AUV data was sourced from Australia’s Integrated Marine Observing System (IMOS) – IMOS is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent. This multimedia product is published with the permission of the CEO, Geoscience Australia.
-
<p>This package contains airborne electromagnetic (AEM) data from the "SkyTEM helicopter EM Howard East region" survey which was flown over Howard East region, Northern Territory during July - August 2017. The area is comprised of 2073.6 line kilometres in total. <p>The aim of the survey is to provide at a reconnaissance scale: <p>a) trends in regolith thickness and variability <p>b) variations in bedrock conductivity <p>c) conductivity of key bedrock (lithology related) conductive units under cover <p>d) the groundwater resource potential of the region <p>This report lists the SkyTEM system information and specifications relevant for this survey, and describes the processing carried out on the data. <p>Geoscience Australia commissioned the survey as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region (https://www.ga.gov.au/eftf).
-
This brief report updates the ‘Two-part Seabed Geomorphology classification scheme’ of Dove et al. (2016) and presents a new glossary (Part 1) of Seabed Morphology features. This Morphology glossary is intended to provide marine scientists with an accurate and robust way to characterise the seabed. Each glossary entry includes a feature definition and a representative schematic diagram to support clear and consistent classification. Feature terms and definitions are primarily drawn from the IHO guide for undersea feature names, which are herein modified and augmented with additional terms to ensure the final feature catalogue and glossary encompasses the diversity of morphologies observed at the seabed, while also minimising duplication and/or ambiguity. This updated classification system and new glossary are the result of a collaboration between marine geoscientists from marine mapping programmes/networks in Norway (MAREANO), Ireland (INFOMAR), UK (MAREMAP), and Australia (Geoscience Australia) (MIM-GA). A subsequent report will present the (Part 2) Geomorphology feature glossary. <b>Citation:</b> Dove, Dayton, Nanson, Rachel, Bjarnadóttir, Lilja R., Guinan, Janine, Gafeira, Joana, Post, Alix, Dolan, Margaret F.J., Stewart, Heather, Arosio, Riccardo, & Scott, Gill. (2020). <i>A two-part Seabed Geomorphology classification scheme (v.2); Part 1: Morphology Features Glossary.</i> Zenodo. https://doi.org/10.5281/zenodo.4071939
-
The continental slope seaward of the Totten Glacier and Sabrina Coast displays a suite of submarine canyons separated by ridges. The ridges show a range of morphological features that indicate they form by accretion of pelagic and hemipelagic sediment which can be remobilised by mass movement. The study area can be divided into two areas with distinct geomorphological features. Canyons in the eastern part of the study area have concave thalwegs and are linked to the shelf edge and upper slope and show signs of erosion and deposition along their beds suggesting cycles of activity controlled by climate cycles. The major canyon in the western part of the area has a convex thalweg. It is likely fed predominantly by mass movement from the flanks of the adjacent ridges with less input sediment from the shelf edge. The ridges between canyons in the Eastern part of the study area are asymmetric with crests close to the west bank of adjacent canyons and are mostly formed by westward advection of fine sediment lofted from turbidity currents and deposition of pelagic sediment. The ridges in the western part of the study area are more likely fully contourites, formed by accretion of suspended sediment with their associated canyons fed by flows derived predominantly from slumping on the adjacent ridge flanks. Canyons and ridges in the eastern part of the study area lie to the east of the Totten Glacier and are seaward of small ice drainage basins feeding the Moscow University Ice Shelf. Ridges and canyons in the western part of area formed from sediment transported along the margin and from detritus originating from the Totten Glacier. Higher sediment supply produced larger, shallower ridges that interact with ocean currents and coincide with a long-lived depocenter. The overall geomorphology of the Sabrina Coast slope is part of a continuum of mixed contourite-turbidite systems identified on the Antarctic margin. These ridges are thus prime locations to sample for sedimentary records of the Totten Glacier’s interaction with the adjacent ocean. <b>Citation:</b> E. O'Brien, A.L. Post, S. Edwards, T. Martin, A. Caburlotto, F. Donda, G. Leitchenkov, R. Romeo, M. Duffy, D. Evangelinos, L. Holder, A. Leventer, A. López-Quirós, B.N. Opdyke, L.K. Armand, Continental slope and rise geomorphology seaward of the Totten Glacier, East Antarctica (112°E-122°E), <i>Marine Geology</i>, Volume 427, 2020, 106221, ISSN 0025-3227, https://doi.org/10.1016/j.margeo.2020.1062
-
This Lake Eyre Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Lake Eyre Basin (LEB) is a vast endorheic basin covering approximately 15% of the Australian continent, spanning about 1.14 million square kilometres. Its development began during the Late Palaeocene due to tectonic subsidence in north-eastern South Australia, resulting in a wide and shallow intra-cratonic basin divided into Tirari and Callabonna Sub-basins by the Birdsville Track Ridge. The depocenter of the LEB has shifted southwards over time. During the Cenozoic era, sediment accumulation was highest near the Queensland-Northern Territory border. The depo-center was in the southern Simpson Desert by the late Neogene, and is currently in Kati Thanda-Lake Eyre, leading to the deposition of various sedimentary formations, which provide a record of climatic and environmental changes from a wetter environment in the Palaeogene to the arid conditions of the present. The LEB is characterized by Cenozoic sediments, including sand dunes and plains in the Simpson, Strezelecki, Tirari, and Strezelecki deserts, mud-rich floodplains of rivers like Cooper, Diamantina, and Georgina, and extensive alluvial deposits in the Bulloo River catchment. The basin's geology comprises rocks from different geological provinces, ranging from Archean Gawler Craton to the Cenozoic Lake Eyre Basin. The Callabonna Sub-basin, confined by the Flinders Ranges to the west, contains formations such as the Eyre and Namba formations, representing fluvial and lacustrine environments. The Cooper Creek Palaeovalley hosts formations like the Glendower, Whitula, Doonbara, and Caldega, and features significant Quaternary sedimentary fill. The Tirari Sub-basin, located on the border regions of three states, contains formations like the Eyre, Etadunna, Mirackina, Mount Sarah Sandstone, Yardinna Claystone, Alberga Limestone, and Simpson Sand. The northwest of Queensland includes smaller Cenozoic basins, likely infilled ancient valleys or remnants of larger basins. The Marion-Noranside Basin has the Marion Formation (fluvial) and Noranside Limestone (lacustrine), while the Austral Downs Basin comprises the Austral Downs Limestone (spring and lacustrine). The Springvale and Old Cork Basins tentatively have Eocene and Miocene ages. Cenozoic palaeovalleys in the Northern Territory are filled with fluvial sands, gravels, lignites, and carbonaceous deposits and are confined by surrounding basins. Overall, the sedimentary sequences in the Lake Eyre Basin provide valuable insights into its geological history, climate shifts, and topographic changes, contributing to our understanding of the region's development over time.
-
In October 2019, opportunistic mapping and imagery of the Wessel Marine Park on the RV Investigator revealed a localised band of high biodiversity linked to a unique and culturally important geomorphological feature in the otherwise uniform seascape prevalent in the Wessel Marine Park. Our findings help contribute to an understanding of the values of a northern marine park, including an inventory of communities and habitats as well as potential relationships to geomorphic features and culturally important sites. This has national significance to the implementation of the northern marine park management plan, as well as informing future monitoring programs in northern Australia. <b>Citation:</b> Przeslawski R, Beaman R, Fava L, Nichol S, Woehler E, Yule C (2020). Wessel Marine Park: Post-Survey Report for INV2019T02. Report to the National Environmental Science Program, <i>Marine Biodiversity Hub</i>. Geoscience Australia.
-
This Officer Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Officer Basin is one of Australia's largest intra-cratonic sedimentary basins, spanning approximately 525,000 square kilometres. It contains a thick sedimentary sequence, ranging up to 10,000 m in depth, composed of rocks from the Neoproterozoic to Late Devonian periods. The basin features diverse depositional environments, including marine and non-marine siliclastic and carbonate units, evaporites, and minor volcanic deposits. The Neoproterozoic succession exhibits a range of depositional settings, including pro-delta to shelf, fluvial to shallow marine, lagoonal, glacial, and aeolian systems. The Cambrian to Ordovician sequence reveals evidence of fluvial, shallow marine, aeolian, sabkha to playa, and lacustrine settings. Volcanic rocks occur sporadically within the sequence, like the Cambrian Table Hill Volcanics in WA and the Neoproterozoic Cadlareena Volcanics in SA. The Officer Basin is considered a remnant of the larger Centralian Superbasin that formed during the Neoproterozoic, covering a vast region in central Australia. The Centralian Superbasin formed as a sag basin during the Tonian, accumulating fluvial, marine, and evaporitic sediments, followed by Neoproterozoic glacial deposits. The long-lasting Petermann Orogeny affected the earlier depositional systems, with extensive uplift along the northern margin of the basin leading to deposition of widespread fluvial and marine siliciclastic and carbonate sediments spanning the terminal Proterozoic to Late Cambrian. The Delamerian Orogeny renewed deposition and reactivated existing structures, and promoted extensive basaltic volcanism in the central and western regions of the basin. Later events are a poorly understood stage, though probably involved continued deposition until the Alice Springs Orogeny uplifted the region, terminating sedimentation in the Late Ordovician or Silurian. A suspected Late Devonian extensional event provided space for fluvial siliciclastic sediment deposition in the north-east. Today, the Officer Basin features four distinct structural zones: a marginal overthrust zone along the northern margin, a zone with rupturing by salt diapirs across the main depositional centre, a central thrusted zone, and a broad gently dipping shelf zone that shallows to the south.
-
Background Wetlands provide a wide range of ecosystem services including improving water quality, carbon sequestration, as well as providing habitat for fish, amphibians, reptiles and birds. Managing wetlands in Australia is challenging due to competing pressures for water availability and highly variable climatic settings. The Wetlands Insight Tool (Ramsar Wetlands) has been developed to provide catchment managers, environmental water holders, andwetlands scientists a consistent historical baseline of wetlands dynamics from 1987 onwards. The Wetlands Insight Tool (Ramsar Wetlands) is available online through the DEA Mapswebsite. The Ramsar Wetlands of Australia Dataset is available under a Creative Commons Attribution 3.0 Australia Licence. We created individual wetland polygons from the multipart Ramsar polygons in the dataset. The 6 Australian Ramsar Sites in external territories are excluded as they are outside of Australia’s satellite data footprint. What this product offers The Wetlands Insight Tool (Ramsar Wetlands) summarises how the amount of water, green vegetation, dry vegetation and bare soil varies over time within eachwetland boundary.It provides the user with the ability to compare how the wetland is behaving now with how it has behaved in the past. This allows users to identify how changes in water availability have affected the wetland.It achieves this bypresentinga combined view of Water Observations from Space (DEA Water Observations), Tasseled Cap Wetness (DEA Wetness Percentiles) and Fractional Cover (DEA Fractional Cover) measurements from the Landsat series of satellites, summarised as a stacked line plot to show how that wetlandhas changed over time.
-
Plutonium (Pu) interactions in the environment are highly complex. Site-specific variables play an integral role in determining the chemical and physical form of Pu, and its migration, bioavailability, and immobility. This paper aims to identify the key variables that can be used to highlight regions of radioecological sensitivity and guide remediation strategies in Australia. Plutonium is present in the Australian environment as a result of global fallout and the British nuclear testing program of 1952 – 1958 in central and west Australia (Maralinga and Monte Bello islands). We report the first systematic measurements of 239+240Pu and 238Pu activity concentrations in distal (≥1,000 km from test sites) catchment outlet sediments from Queensland, Australia. The average 239+240Pu activity concentration was 0.29 mBq.g -1 (n = 73 samples) with a maximum of 4.88 mBq.g -1. 238Pu/239+240Pu isotope ratios identified a large range (0.02 – 0.29 (RSD: 74%)) which is congruent with the heterogeneous nuclear material used for the British nuclear testing programme at Maralinga and Montebello Islands. The use of a modified PCA relying on non-linear distance correlation (dCorr) provided broader insight into the impact of environmental variables on the transport and migration of Pu in this soil system. Primary key environmental indicators of Pu presence were determined to be actinide/lanthanide/heavier transition metals, elevation, electrical conductivity (EC), CaO, SiO2, SO3, landform, geomorphology, land use, and climate explaining 81.7% of the variance of the system. Overall this highlighted that trace level Pu accumulations are associated with the coarse, refractive components of Australian soils, and are more likely regulated by the climate of the region and overall soil type. <b>Citation:</b> Megan Cook, Patrice de Caritat, Ross Kleinschmidt, Joёl Brugger, Vanessa NL. Wong, Future migration: Key environmental indicators of Pu accumulation in terrestrial sediments of Queensland, Australia,<i> Journal of Environmental Radioactivity</i>, Volumes 223–224, 2020, 106398,ISSN 0265-931X, https://doi.org/10.1016/j.jenvrad.2020.106398
-
The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota