Authors / CoAuthors
Sullivan, J. | Powell, L.
Abstract
Geoscience Australia (GA) has been developing the National Exposure Information System (NEXIS), a national database of exposure information to identify elements in both the built environment and community that are at risk from natural disasters. A key component of NEXIS is the description of each building including footprint area and height; these geometric characteristics can be derived from LiDAR. This investigation is an assessment of the current abilities of GA and industry partners to provide this data. GA holds LiDAR data representing 70% of the places Australians live, however most of these dataset have not been processed to identify buildings. Five software methods and five industry partners were assessed for their ability to do two main tasks: identify or classify buildings in the LiDAR point clouds, and extract geometric characteristics of buildings. The extracted features were assessed using an urban LiDAR point cloud that has good accuracy and a high data density. Feature-based and area-based assessment methods were developed to assess the output of software packages against a reference building dataset provided by the Launceston Council. The various methods achieved a producer's accuracy between 80% and 90%, user's accuracy between 70% and 90%, and overall accuracy between 90% and 95%.
Product Type
nonGeographicDataset
eCat Id
81861
Contact for the resource
Custodian
Owner
Custodian
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationAbstract
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2014-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
notPlanned
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.