Rates of seismogenic landscape change in intraplate Australia
Australia is one of the lowest, flattest, most arid, and most slowly eroding continents on Earth (Quigley et al. 2010). The average elevation of the continent is only c. 330 m above sea level (asl), maximum local topographic relief is everywhere <1500 m (defined by elevation ranges with 100 km radii) and two-thirds of the continent is semi-arid to arid. With the exception of localized upland areas in the Flinders and Mt Lofty Ranges (Quigley et al. 2007a, Quigley et al. 2007b) and the Eastern Highlands (Chappell 2006, Tomkins et al. 2007), bedrock erosion rates are typically 1-10 m/Ma (Wellman & McDougall 1974, Bishop 1985, Young & MacDougall 1993, Bierman & Caffee 2002, Belton et al. 2004, Chappell 2006, Heimsath et al. 2010) (Fig. 1A). Despite this apparent geomorphological longevity (e.g. Fig. 1B), Australia has had a dynamic Neogene to Recent tectonic history.
In the last five decades seven locations in intraplate Australia are documented as having experienced earthquakes large enough to rupture the ground surface (Clark et al. 2013). These earthquakes produced scarps up to 2 m high and 37 km long. Several hundred features consistent in form to the historic ruptures have since been identified Australia-wide (Fig. 2), mainly through interrogation of digital elevation data (Clark et al. 2011, Clark et al. 2012). Palaeoseismic analysis of these features indicates that periods of earthquake activity comprising a finite number of large events are separated by much longer periods of seismic quiescence. While morphogenic earthquake events in an active period on a given fault may be separated by a few thousand years (-0.4 mm/a uplift rates in an active period), active periods might be separated by a million years or more (long term uplift rates -0.001mm/a). A rupture sequence of this kind has the potential to have a dramatic effect on the landscape, especially in regions of low local topographic relief, such as the Murray Basin. For example, uplift across the Cadell Fault (see Fig. 2 for location) in the interval 70 - 20 ka resulted in the formation of a 15 m high and 80 km long scarp which temporarily dammed, and ultimately diverted the Murray and Goulburn Rivers (McPherson et al. 2012). Even in upland regions, the effects can be marked, as demonstrated by the formation of Lake George over the last ca. 4 Ma as the result of uplift on the Lake George Fault (Pillans 2012). Over timescales of millions of years, such activity, in combination with mantle-related dynamic topographic effects (Sandiford 2007, Sandiford et al. 2009, Quigley et al. 2010), might be expected to have a significant influence on the distribution and thickness of regolith over large areas.
Simple
Identification info
- Date (Publication)
- 2014-01-01T00:00:00
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/78743
- Cited responsible party
-
Role Organisation / Individual Name Details Author Clark, D.
1 Author McPherson, A.
2
- Point of contact
-
Role Organisation / Individual Name Details Custodian CSEMD
Owner Commonwealth of Australia (Geoscience Australia)
Custodian Commonwealth of Australia (Geoscience Australia)
Voice
- Topic category
-
- Geoscientific information
- Maintenance and update frequency
- Not planned
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- Keywords
-
-
External Publication
-
Abstract
-
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
-
Tectonics
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
Creative Commons Attribution 4.0 International Licence
- Alternate title
-
CC-BY
- Edition
-
4.0
- Access constraints
- License
- Use constraints
- License
Resource constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice
- OnLine resource
-
Link to Publication
Link to Publication
Resource lineage
- Statement
-
i typed it into microsoft word.
- Hierarchy level
- Non geographic dataset
- Other
-
External Publication
- Description
-
Proceedings of the Third Australian Regolith Geoscientists Association Conference
Metadata constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/edece728-250c-4f09-e044-00144fdd4fa6
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice
Type of resource
- Resource scope
- Non geographic dataset
- Name
-
nonGeographicDataset
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/78743
- Date info (Revision)
- 2018-04-20T06:04:15
- Date info (Creation)
- 2013-12-20T00:00:00
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- https://pid.geoscience.gov.au/dataset/ga/122551