Authors / CoAuthors
Peeters, L.J.M. | Crosbie, R.S. | Henderson, B.H. | Holland, K. | Lewis, S. | Post, D.A. | Schmidt, R.K.
Abstract
We are often faced with uncertainty when making decisions – from trivial decisions such as whether to take an umbrella, or major decisions such as whether to buy that house. Appreciating the uncertainty in future conditions (‘will it rain today?’; ‘will house prices continue to go up?’) is crucial to making good decisions. This is no different for water resource managers, who need to make decisions on flood prevention, climate adaptation or coal resource developments. As scientists, we strive to inform decision-makers about uncertainties in a comprehensive, unbiased and transparent manner. In this paper, we discuss some of the challenges and approaches used to communicate uncertainty during our contributions to the Bioregional Assessments Programme, a federally funded research project to assess the potential impacts of coal resource development on water resources and water-dependent assets in eastern Australia. A first step in analysing potential impacts, is to identify the causal pathways that detail how development activities can possibly affect the groundwater and surface water systems, and how these changes might affect the economic, social and ecological functioning of a region. This conceptual model provides the framework for detailed geological, hydrogeological, hydrological and ecological modelling. Predictions have traditionally been made using a single deterministic model, a calibrated model that best fits the available observations. However, to assess the likelihood of potential impacts, we used a stochastic approach to create an ensemble of possible predictions (hundreds and thousands of possible answers) that are all consistent with the available observations. This results in a range or distribution of predictions. However, communicating the range of model results, as well as all of the complexities and underlying assumptions in a way that is relevant and accessible to decision-makers is very challenging. For bioregional assessments, we have worked with decision makers to improve communication of uncertainty using a consistent, calibrated language, tables, plots of the range of predictions and maps designed to convey probabilistic information in an intuitive manner. Further, model details and assumptions are documented in technical reports, and the data, models and predictions are made publicly available to increase transparency and reproducibility. The amount and technical detail of that information can be challenging for decision-makers to identify what is important and what is not. To support decision-makers, we use a qualitative uncertainty analysis to summarise the rationale for and effect on prediction of each major assumption. This table, in combination with a plain English discussion, allows readers to rapidly appreciate the limitations, as well as opportunities for further data collection or modelling. Bioregional assessments have highlighted the importance of early consultation with target audiences, which has enabled us to tailor the uncertainty communication products to decision-makers, as well as avoid the potential for biased interpretation of results, where decision-makers are drawn to the extremes. <b>Citation:</b> Peeters, L.J.M., Crosbie, R.S., Henderson, B.H., Holland, K., Lewis, S., Post, D.A., Schmidt, R.K., The importance of being uncertain, <i>Water e-Journal</i>, Vol 3, No.2, 2018. ISSN 2206-1991. https//doi.org/10.21139/wej.2018.006
Product Type
document
eCat Id
117181
Contact for the resource
{role}
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Resource provider
Point of contact
- Contact instructions
- MEG
Keywords
- theme.ANZRC Fields of Research.rdf
-
- EARTH SCIENCES
- ( Discipline )
-
- uncertainty
- ( Discipline )
-
- hydrology
-
- Bioregional assessments
-
- Published_External
Publication Date
2024-02-14T01:27:34
Creation Date
2018-03-29T00:00:00
Security Constraints
Classification - unclassified
Legal Constraints
Status
completed
Purpose
Article for the Online Journal of The Australian Water Association - water e-journal
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
Water e-Journal Volume 3 No 2 2018
Lineage
Article for the Online Journal of The Australian Water Association - water e-journal
Parent Information
Extents
[-44.00, -9.00, 154.00, 112.00]
Reference System
Spatial Resolution
Service Information
Associations
Source Information