From 1 - 10 / 187
  • In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.

  • ACRES Technical Document - Landsat MSS Data Format Description. Table of Contents.

  • The product SAR.GEC is a digital image generated from raw SAR data takes using up-to-date auxiliary parameters, with the best available instrubmental corrections applied, precisely located and recified onto a map projection. The ESA SAR.GEC format is based on teh general definistion of the SAR CEOS format (ref. ER-IS-EPO-GS-5902).

  • The 3 second (~90m) Smoothed Digital Elevation Model (DEM-S) Version 1.0 was derived from resampling the 1 second SRTM derived DEM-S (gridded smoothed digital elevation model; ANZCW0703014016). The DEM represents ground surface topography, excluding vegetation features, and has been smoothed to reduce noise and improve the representation of surface shape. The DEM-S was derived from the 1 second Digital Surface Model (DSM; ANZCW0703013336) and the Digital Elevation Model Version 1.0 (DEM; ANZCW0703013355) by an adaptive smoothing process that applies more smoothing in flatter areas than hilly areas, and more smoothing in noisier areas than in less noisy areas. This DEM-S supports calculation of local terrain shape attributes such as slope, aspect and curvatures that could not be reliably derived from the unsmoothed 1 second DEM because of noise. A full description of the methods is in progress (Gallant et al., in prep) and in the 1 second User Guide. The 3 second DEM was produced for use by government and the public under Creative Commons attribution. The 1 second DSM and DEM that forms the basis of the product are also available as 3 second products (DSM; ANZCW0703014216, DEM; ANZCW0703014182, DEM-S; ANZCW0703014217). <strong>Please note that all 1 second products are available for GOVERNMENT USERS ONLY.</strong>

  • Legacy product - no abstract available

  • ACRES Update, Issue 18, June 1999 Online ordering of satellite imagery ACRES to offer Landsat 7 imagery SAR data detects oil slicks New $2 million optiacal data processor

  • ACRES Update, Issue 21, July 2000 Terra Oberving the Earth New Product Catalogue Remote Sensing and emergency management

  • This document describes a tape format used by ACRES Data Acquisition Facility (DAF) in Alice Springs and the Tasmanian Earth Resources Satellite Station (TERSS) in Hobart for raw data storage of satellite data. Although the format is generic enough to be used with a variety of tape drive technologies, the ADF implementation is currently using Digital Linear Tapes (DLTs). This format description is therefore explicitly discussing (and may therefore appear limited to) the DLT. More specifically, the tape drives used at the DAF and TERSS ground stations are DLT7000s. PURPOSE OF THE DOCUMENT This is an Interface Control Document (ICD). The intent is to produce a description detailed enough for any developer of a system or software module to make use of and interface in an optimum way to the device/module/format subject of this description.