From 1 - 10 / 174
  • Along the Aceh-Andaman subduction zone, there was no historical precedent for an event the size of the 2004 Sumatra-Andaman tsunami; therefore, neither the countries affected by the tsunami nor their neighbours were adequately prepared for the disaster. By studying the geological signatures of past tsunamis, the record may be extended by thousands of years, leading to a better understanding of tsunami frequency and magnitude. Sedimentary evidence for the 2004 Sumatra-Andaman tsunami and three predecessor great Holocene tsunamis is preserved on a beach ridge plain on Phra Thong Island, Thailand. Optically stimulated luminescence ages were obtained from tsunami-laid sediment sheets and surrounding morphostratigraphic units. Single-grain results from the 2004 sediment sheet show sizable proportions of near-zero grains, suggesting that the majority of sediment was well-bleached prior to tsunami entrainment or that the sediment was bleached during transport. However, a minimum-age model needed to be applied in order to obtain a near-zero luminescence age for the 2004 tsunami deposit as residual ages were found in a small population of grains. This demonstrates the importance of considering partial bleaching in water-transported sediments. The OSL results from the predecessor tsunami deposits and underlying tidal flat sands show good agreement with paired radiocarbon ages and constrain the average recurrence of large late Holocene tsunami on the western Thai coast to between 500 to 1000 years. This is the first large-scale application of luminescence dating to gain recurrence estimates for large Indian Ocean tsunami. These results increase confidence in the use of OSL to date tsunami-laid sediments, providing an additional tool to tsunami geologists when material for radiocarbon dating is unavailable. Through an understanding of the frequency of past tsunami, OSL dating of tsunami deposits can improve our understanding of tsunami hazard and provide a means of assessing fu

  • The historical record reveals that at least five tsunamis have impacted the Western Australian coast (1993, 1977, 1994, 2004, 2006). We document the geomorphic effects of these tsunamis through field investigations, analysis of pre and post-tsunami satellite imagery, collation of historical reports and recording of eyewitness accounts. The tsunamis had flow depths of less than 3 m, inundation distances of up to several hundred metres and a maximum recorded run-up height of 8 m a.s.l. Geomorphic effects include off-shore and near-shore erosion and extensive vegetation damage. In some cases, vegetated foredunes were severely depleted or completely removed. Gullies and scour pockets up to 1.5 m deep were eroded into topographic highs during tsunami outflow. Eroded sediments were redeposited landward as sediment sheets several centimetres thick. Isolated coral blocks and oyster-encrusted boulders were deposited over coastal dunes. However, boulder ridges were often unaffected by tsunami flow. The extent of inundation from the most recent tsunamis can be distinguished as strandlines of coral rubble and rafted vegetation. It is likely taht these features are ephemeral and seasonal coastal processes will obscure all traces of these signatures within years to decades. Recently reported evidence for Holocene palaeotsunamis on the Western Australian coast suggests significantly larger run-up and inundation than observed in the historical record. The evidence includes signatures such as chevrons dunes that have not been observed to form during historical events. We have compared the geomorphic effects of historical tsunami with reported palaeotsunami evidence from Coral Bay, Cape Range Peninsula and Port Samson. We conclude that much of the postulated palaeotsunami evidence can be explained by more common and ongoing geomorphic processes such as reef evolution, aeolian dune development and archaeological site formation.

  • Recent centuries provide no precedent for the 2004 Indian Ocean tsunami, either on the coasts it devastated or within its source area. The tsunami claimed nearly all of its victims on shores that had gone 200 years or more without a tsunami disaster. The associated earthquake of magnitude 9.2 defied a Sumatra-Andaman catalogue that contains no nineteenth-century or twentieth-century earthquake larger than magnitude 7.9. The tsunami and the earthquake together resulted from a fault rupture 1,500 km long that expended centuries -worth of plate convergence. Here, using sedimentary evidence for tsunamis, we identify probable precedents for the 2004 tsunami at a grassy beach-ridge plain 125 km north of Phuket. The 2004 tsunami, running 2 km across this plain, coated the ridges and intervening swales with a sheet of sand commonly 5-20 cm thick. The peaty soils of two marshy swales preserve the remains of several earlier sand sheets less than 2,800 years old. If responsible for the youngest of these pre-2004 sand sheets, the most recent full-size predecessor to the 2004 tsunami occurred about 550-700 years ago.

  • Explaining spatial variation and habitat complexity of benthic habitats from underwater video through the use of maps. Different methodologies currently used to process and analyse percent cover of benthic organisms from underwater video will be addressed and reviewed.

  • This data package consists of 83 QuickBird satellite images, each in four spectral bands at 2.4 metre spatial resolution. The scene locations are scattered around the Australian coast line. The data was initially acquired as part of a joint project involving Geoscience Australia (GA), CSIRO Land and Water and the University of Tasmania, as part of the National Land and Water Resource Audit (NLWRA). The data are supplied under licence and potential licensees must first seek specific approval from the satellite operator (through GA) before being granted access to the data.

  • No abstract available

  • Note that this Record has now been published as Record 2014/050, GeoCat number 78802

  • Bathymetry is the study and mapping of the sea floor. It involves obtaining measurements of the depth of the ocean and is the equivalent to mapping topography on land. Bathymetric data is collected in multiple ways: 1. Satellite data can be used to produce maps showing general features over a large area at low resolution. Satellite altimetry measures the height of the ocean surface. If there are hills/mountains on the sea floor, the gravitational pull around that area will be greater and hence the sea surface will bulge. This measurement can be used to show where the seafloor is higher, and this can be used to produce maps showing general features over a large area at low resolution. 2. Single beam echosounders produce a single line of depth points directly under the equipment. These measurements are usually made while a vessel is moving to identify general sea floor patterns and/or schools of fish. 3. Equipment that captures swathes of data by acquiring multiple depth points in each area, such as multibeam echosounders (or swath echosounders) and airborne laser measurements (LADS). These datasets are very high resolution, with data down to better than one metre accuracy. This bathymetry dataset is a collection of singlebeam data sourced from seismic navigation lines, multibeam data, satellite and LADS data acquired by GA and by other government and non-government agencies.