Palaeontology (incl. Palynology)
Type of resources
Keywords
Publication year
Topics
-
macrofossil biostratigraphic analysis of samples taken from Cambrian units in GSQ Mt Whelan 1 well
-
macrofossil biostratigraphic analysis of samples taken from Cambrian units in Todd 1 well
-
This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the brachiopod Atrypa duntroonensis. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.
-
The series of samples forwarded for micro-palaeontological examination was from the depth of 1275 feet down to 1553 feet and was in continuation of that reported upon on 19/1/42.
-
macrofossil biostratigraphic analysis of samples taken from Cambrian units in Bradley 1 well
-
Biostratigraphic analysis of macrofossils extracted from samples taken from BMR Mt Isa 1 well
-
A preliminary report on these samples was forwarded on 19/2/'42, the final report being delayed until the results of a mineralogical examination of two rock types, prominent in samples from 1542 feet down to 1549 feet was available. The results of this examination are now available.
-
This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the trilobite Batocara mitchelli. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.
-
This document is a professional opinion, presenting an assessment of the macrofossils present in well CKAD0001, located in the Northern Territory in the Georgina Basin.
-
The upper Permian to Lower Triassic sedimentary succession in the southern Bonaparte Basin represents an extensive marginal marine depositional system that hosts several gas accumulations. Of these, the Blacktip gas field has been in production since 2009, while additional identified gas resources are under consideration for development. The sedimentary succession extends across the Permian–Triassic stratigraphic boundary, and shows a change in lithofacies changes from the carbonate dominated Dombey Formation to the siliciclastic dominated Tern and Penguin formations. The timing, duration, distribution and depositional environments of these formations in the Petrel Sub-basin and Londonderry High is the focus of this study. The sedimentary succession extending from the Dombey to the Penguin formations is interpreted to represent marginal marine facies which accumulated during a long-lasting marine transgression that extended over previous coastal and alluvial plain sediments of the Cape Hay Formation. The overlying Mairmull Formation represents the transition fully to marine deposition in the Early Triassic. Regional scale well correlations and an assessment of available biostratigraphic data suggest marginal marine deposition systems were initiated outboard before the End Permian Extinction event, subsequently migrated inboard at about the Permian–Triassic stratigraphic boundary, and continued to be deposited through the faunal and floral recovery phase as Triassic species became established. The depositional history of the basin is translated to a chronostratigraphic framework which has implications for predicting the character and distribution of petroleum system elements in the Petrel Sub-basin and Londonderry High. Appeared in The APPEA Journal 61(2) 699-706, 2 July 2021