From 1 - 10 / 21
  • The Great Artesian Basin (GAB) covers one fifth of Australia and is the largest groundwater ‘basin’ on the continent. Groundwater from the GAB is a vital resource for pastoral, agricultural and extractive industries, underpinning at least $12.8 billion in economic activity annually, as well as providing town water supplies and supporting environmental and cultural values. The Australian Government, through the National Water Infrastructure Development Fund – Expansion, commissioned Geoscience Australia to undertake the project ‘Assessing the Status of Groundwater in the Great Artesian Basin’. A key deliverable of this project is a water balance (for 2019) encompassing the main aquifers of the GAB. To facilitate this outcome, a range of tools and techniques to assist in the development of improved hydrogeological conceptualisations of the GAB have been developed and assessed. This report presents the results of investigations from a pilot study area in the northern Surat Basin, Queensland, with components of the work extending into the wider GAB. The results demonstrate that the application of existing and new geoscientific data and technologies has the potential to further improve our understanding of the GAB hydrogeological system thus supporting the responsible management of basin water resources. Groundwater recharge potential within the GAB intake beds has been investigated using techniques that consider variations in physical and environmental characteristics. Empirical modelling assessing deep drainage as a recharge proxy suggests that, with isolated exceptions, diffuse recharge potential is generally low across most of the study area. The spatial variability in recharge potential can assist in the interpretation and/or interpolation of estimates derived from other techniques, such as chloride mass balance. The results of machine learning modelling suggest that further work is needed to better constrain uncertainty in input and training datasets, and in the development of robust translations of outputs to hydrogeologically meaningful products. The chloride mass balance (CMB) method remains the most appropriate tool for estimating long-term mean gross recharge to GAB aquifers in the northern Surat Basin. New upscaling methods provide significant improvements for mapping regional scale groundwater recharge rates and quantifying uncertainties associated with these estimates. Application of multiple techniques to the assessment of groundwater flow and recharge processes is necessary to complement CMB recharge estimates, and reduce associated uncertainty. Analysis of groundwater environmental tracers are recommended for constraining CMB recharge rates. Integrated geological assessments using airborne electromagnetic data in conjunction with other geophysical and geological data (e.g., reflection seismic, wells) are effective at characterising aquifer architecture to better understand geometry, flow pathways and structural controls relevant to recharge and connectivity at local to regional scales. Significant effort has gone into updating the regional geological framework at the whole-of-GAB scale, combining legacy and new data with recent knowledge to revise the hydrogeological conceptualisation of the GAB. This assists in constraining interpretations of regional depositional architecture and lithological heterogeneity within hydrogeological units, particularly those properties that influence groundwater storage and flux. Assessment of lateral and vertical heterogeneity of hydraulic properties within and between aquifers and aquitards in the northern Surat Basin has refined our understanding of potential groundwater connectivity and compartmentalisation. This study provides an improved hydrogeological framework to support revised water balance estimates for the GAB, and insights into potential recharge variability that may impact those input components. Targeted examples from the northern Surat Basin demonstrate the application of the techniques and tools employed, including methods to reduce uncertainty. The outcomes of this work underpin a revised hydrogeological conceptualisation for the GAB, a standardised basis for establishing future investigations, and a framework for more informed water management decision-making.

  • Knowledge of the nature of buildings within CBD areas is fundamental to a broad range of decision making processes, including planning, emergency management and the mitigation of the impact of natural hazards. To support these activities, Geoscience Australia has developed a building information system called the National Exposure Information System (NEXIS) which provides information on buildings across Australia. Most of the building level information in NEXIS is statistically derived, but efforts are being made to include more detailed information on the nature of individual buildings, particularly in CBD areas. This is being achieved in Melbourne through field survey work.

  • HiQGA is a general purpose software package for spatial statistical inference, geophysical forward modeling, Bayesian inference and inversion (both deterministic and probabilistic). It includes readily usable geophysical forward operators for airborne electromagnetics (AEM), controlled-source electromagnetics (CSEM) and magnetotellurics (MT). Physics-independent inversion frameworks are provided for probabilistic reversible-jump Markov chain Monte Carlo (rj-MCMC) inversions, with models parametrised by Gaussian processes (Ray and Myer, 2019), as well as deterministic inversions with an "Occam inversion" framework (Constable et al., 1987). In development software for EFTF since 2020

  • One of the aims of the Exploring for the Future program is to promote the discovery of new mineral deposits in undercover frontiers. Iron oxide–copper–gold mineral systems are a desirable candidate for undercover exploration, because of their potential to generate large deposits with extensive alteration footprints. This mineral potential assessment uses the mineral systems concept: developing mappable proxies of required theoretical criteria, combined to demonstrate where conditions favourable for mineral deposit formation are spatially coincident. This assessment uses a 2D geographical information system workflow to map the favourability of the key mineral system components. Two outputs were created: a comprehensive assessment, using all available spatial data; and a coverage assessment, which is constrained to data that have no reliance on outcrop. The results of these assessment outputs were validated with spatial statistics, demonstrating how the assessment can predict the presence of known ore deposits. Both assessment outputs present new areas of interest with prospectivity in under-explored regions of undercover northern Australia. The intended aims are already being realised, as this tool has aided area selection for pre-competitive stratigraphic drilling as part of the MinEx CRC National Drilling Initiative. <b>Citation:</b> Murr, J., Skirrow, R.G., Schofield, A., Goodwin, J., Coghlan, R., Highet, L., Doublier, M.P., Duan, J. and Czarnota, K., 2020. Tennant Creek – Mount Isa IOCG mineral potential assessment. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). <p>The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of previous regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. <p>Survey blocks available for download include: <p>Streaky Bay, block 5 <p>Gairdner, block 6A <p>Spencer, block 7 <p>Kingoonya, block 9B <p>The following grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• Dose rate concentration grid (nGy/hr). <p>• Potassium concentration grid (%). <p>• Thorium concentration grid (ppm). <p>• Uranium concentration grid (ppm). <p>• NASVD processed dose rate concentration grid (nGy/hr). <p>• NASVD processed potassium concentration grid (%). <p>• NASVD processed thorium concentration grid (ppm). <p>• NASVD processed uranium concentration grid (ppm). <p>The following point located data are available in this download: <p>• Elevation. Height relative to the Australian Height Datum. Datum: GDA94 <p>• Total Magnetic Intensity. Datum: GDA94 <p>• Radiometrics. Datum: GDA94

  • The magnetotelluric (MT) method is increasingly being applied to map tectonic architecture and mineral systems. Under the Exploring for the Future (EFTF) program, Geoscience Australia has invested significantly in the collection of new MT data. The science outputs from these data are underpinned by an open-source data analysis and visualisation software package called MTPy. MTPy started at the University of Adelaide as a means to share academic code among the MT community. Under EFTF, we have applied software engineering best practices to the code base, including adding automated documentation and unit testing, code refactoring, workshop tutorial materials and detailed installation instructions. New functionality has been developed, targeted to support EFTF-related products, and includes data analysis and visualisation. Significant development has focused on modules to work with 3D MT inversions, including capability to export to commonly used software such as Gocad and ArcGIS. This export capability has been particularly important in supporting integration of resistivity models with other EFTF datasets. The increased functionality, and improvements to code quality and usability, have directly supported the EFTF program and assisted with uptake of MTPy among the international MT community. <b>Citation:</b> Kirkby, A.L., Zhang, F., Peacock, J., Hassan, R. and Duan, J., 2020. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Knowledge of the nature of buildings within CBD areas is fundamental to a broad range of decision making processes, including planning, emergency management and the mitigation of the impact of natural hazards. To support these activities, Geoscience Australia has developed a building information system called the National Exposure Information System (NEXIS) which provides information on buildings across Australia. Most of the building level information in NEXIS is statistically derived, but efforts are being made to include more detailed information on the nature of individual buildings, particularly in CBD areas. This is being achieved in Brisbane through field survey work.

  • As part of the Great Artesian Basin (GAB) Project a pilot study was conducted in the northern Surat Basin, Queensland, to test the ability of existing and new geoscientific data and technologies to further improve our understanding of hydrogeological systems within the GAB, in order to support responsible management of basin water resources. This report presents selected examples from the preliminary interpretation of modelled airborne electromagnetic (AEM) data acquired as part of this pilot study. The examples are selected to highlight key observations from the AEM with potential relevance to groundwater recharge and connectivity. Previous investigations in the northern Surat Basin have suggested that diffuse groundwater recharge rates are generally low (in the order of only a few millimetres per year) across large areas of the GAB intake beds—outcropping geological units which represent a pathway for rainfall to enter the aquifers—and that, within key aquifer units, recharge rates and volumes can be heterogeneous. Spatial variability in AEM conductivity responses is identified across different parts of the northern Surat Basin, including within the key Hutton Sandstone aquifer. Consistent with findings from other studies, this variability is interpreted as potential lithological heterogeneity, which may contribute to reduced volumes of groundwater entering the deeper aquifer. The influence of geological structure on aquifer geometry is also examined. Larger structural zones are seen to influence both pre- and post-depositional architecture, including the presence, thickness and dip of hydrogeological units (or parts thereof). Folds and faults within the Surat Basin sequences are, in places, seen as potential groundwater divides which may contribute to compartmentalisation of aquifers. Discrete faults have the potential to influence inter-aquifer connectivity. The examples presented here demonstrate the utility of AEM models, in conjunction with other appropriate geophysical and geological data, for characterising potential recharge areas and pathways within the main GAB aquifer units, by helping to better define aquifer geometry, lithological heterogeneity and possible structural controls. Such assessments have the potential to further improve our understanding of groundwater recharge and flow path variability at local to regional scales. Acquisition of broader AEM data coverage across groundwater recharge areas, along with complementary geophysical, geological and hydrogeological data, would further assist in quantifying recharge variability, facilitating revised water balance estimates for the basin and thereby supporting GAB water resource management and policy decision-making.

  • This report presents groundwater levels results from the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. This report describes a data release of water levels measured in monitoring bores in both provinces by Geoscience Australia during the EFTF project. It includes: - A full description of how water levels in metres relative to Australian Height Datum (m AHD; where zero m AHD is an approximation of mean sea level) were calculated from manual dips and electronic dataloggers for this project. - A series of tables in Appendix A containing sufficient information for each bore and datalogger file to reproduce the water levels reported in Appendix B and Appendix C. - A series of hydrographs in Appendix B showing how water levels (in m AHD) interpreted from manual dips and datalogger files varied during the EFTF project. - A series of electronic files in Appendix C that include (i) Data files from dataloggers in CSV file format that can be used with the information contained in this data release to regenerate the water levels shown on hydrographs in Appendix B, and (ii) Data files in CSV file format reporting the final water levels used to generate the hydrographs in Appendix B. This data release report does not include hydrograph interpretation, which is undertaken in detail in: Cook, S. B. & Ransley, T. R., 2020. Exploring for the Future—Groundwater level interpretations for the McBride and Nulla basalt provinces: Upper Burdekin region, North Queensland. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/135439.

  • Fresh groundwater stored in Australian coastal aquifers is an important resource for humans and the natural environment. Many Australian coastal aquifers are vulnerable to seawater intrusion (SWI)—the landward encroachment of sea water into coastal aquifers—which can significantly degrade water quality and reduce freshwater availability. The increasing demands for fresh water in coastal areas and the anticipated impacts of climate change (such as sea-level rise and variations in rainfall recharge) may result in increases in the incidence and severity of SWI. Comprehensive investigations of SWI are relatively uncommon and the extent of monitoring and investigations specific to SWI are highly variable across the nation. In response to the threat posed by SWI, Geoscience Australia and the National Centre for Groundwater Research and Training, in collaboration with state and territory water agencies, undertook a national-scale assessment of the vulnerability of coastal aquifers to SWI. This assessment identified the coastal groundwater resources that are most vulnerable to SWI, including future consequences of over-extraction, sea-level rise, and recharge–discharge variations associated with climate change. The study focused on assessing the vulnerability of coastal aquifers to the landward migration of the freshwater–saltwater interface, rather than surface waterbodies.