From 1 - 10 / 38
  • This report provides a description of the activities completed during the Bynoe Harbour Marine Survey, from 3 May and 17 May 2016 on the RV Solander (Survey GA4452/SOL6432). This survey was a collaboration between Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) and the second of four surveys in the Darwin Harbour Seabed Habitat Mapping Program. This 4 year program (2014-2018) aims to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline information and developing thematic habitat maps that will underpin future marine resource management decisions. The program was made possible through funds provided by the INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The specific objectives of the Bynoe Harbour Marine Survey GA4452/SOL6432 were to: 1. Obtain high resolution geophysical (bathymetry) data for the deeper areas of Bynoe Harbour (<5 m), including Port Patterson; and, 2. Characterise substrates (acoustic backscatter properties, sub-bottom profiles, grainsize, sediment chemistry) the deeper areas of Bynoe Harbour (<5 m), including Port Patterson. Data acquired during the survey included: 698 km2 multibeam sonar bathymetry, water column and backscatter; 102 Smith-McIntyre grabs, 104 underwater camera drops, 29 sub-bottom profile lines and 34 sound velocity profiles.

  • This package contains presentations given during NT Resources week, at the Uncovering East Tennant workshop held in Darwin on September 3, 2019, and Mining the Territory, September 5, 2019. The presentation given by Andrew Heap at the Mining the Territory forum is a high level overview of the data collection and activities of GA and it's collaborative partners across Northern Australia in conjunction with the Exploring for the Future (EFTF) program. The workshop, held in collaboration with the Northern Territory Geological Survey, outlined new mineral exploration opportunities in the East Tennant area, which lies beneath the Barkly Tableland and extends approximately 250 km east of Tennant Creek. The East Tennant area has been the focus of geochemical, geological and geophysical data acquisition as part of Geoscience Australia's Exploring for the Future program. This free event showcased new science insights for the East Tennant area and how this under-explored region has opportunities for greenfield mineral discoveries.

  • Seismic reflection mapping, geochemical analyses and petroleum systems modelling have increased our understanding of the highly prospective Mesoproterozoic and Paleoproterozoic source rocks across northern Australia, expanding the repertoire of exploration targets currently being exploited in Proterozoic petroleum systems. Data collected during the Exploring for the Future program have enabled us to redefine and increase the extent of regional petroleum systems, which will encourage additional interest and exploration activity in frontier regions. Here, we present a review of the Paleoproterozoic McArthur and Mesoproterozoic Urapungan petroleum supersystems, and the most up-to-date interpretation of burial and thermal history modelling in the greater McArthur Basin (including the Beetaloo Sub-basin), South Nicholson Basin and Isa Superbasin. We also present potential direct hydrocarbon indicators imaged in the 2017 South Nicholson Deep Crustal Seismic Survey that increase the attractiveness of this frontier region for hydrocarbon exploration activities. <b>Citation:</b> MacFarlane, S.K., Jarrett, A.J.M., Hall, L.S., Edwards, D., Palu, T.J., Close, D., Troup, A. and Henson, P., 2020. A regional perspective of the Paleo- and Mesoproterozoic petroleum systems of northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Building on newly acquired airborne electromagnetic and seismic reflection data during the Exploring for the Future (EFTF) program, Geoscience Australia (GA) generated a cover model across the Northern Territory and Queensland, in the Tennant Creek – Mount Isa (TISA) area (Figure 1; between 13.5 and 24.5⁰ S of latitude and 131.5 and 145⁰ E of longitude) (Bonnardot et al., 2020). The cover model provides depth estimates to chronostratigraphic layers, including: Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The depth estimates are based on the interpretation, compilation and integration of borehole, solid geology, reflection seismic, and airborne electromagnetic data, as well as depth to magnetic source estimates. These depth estimates in metres below the surface (relative to the Australian Height Datum) are consistently stored as points in the Estimates of Geophysical and Geological Surfaces (EGGS) database (Matthews et al., 2020). The data points compiled in this data package were extracted from the EGGS database. Preferred depth estimates were selected to ensure regional data consistency and aid the gridding. Two sets of cover depth surfaces (Bonnardot et al., 2020) were generated using different approaches to map megasequence boundaries associated with the Era unconformities: 1) Standard interpolation using a minimum-curvature gridding algorithm that provides minimum misfit where data points exist, and 2) Machine learning approach (Uncover-ML, Wilford et al., 2020) that allows to learn about relationships between datasets and therefore can provide better depth estimates in areas of sparse data points distribution and assess uncertainties. This data package includes the depth estimates data points compiled and used for gridding each surface, for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic (Figure 1). To provide indicative trends between the depth data points, regional interpolated depth surface grids are also provided for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The grids were generated with a standard interpolation algorithm, i.e. minimum-curvature interpolation method. Refined gridding method will be necessary to take into account uncertainties between the various datasets and variable distances between the points. These surfaces provide a framework to assess the depth and possible spatial extent of resources, including basin-hosted mineral resources, basement-hosted mineral resources, hydrocarbons and groundwater, as well as an input to economic models of the viability of potential resource development.

  • <p>The Northern Territory Geological Survey (NTGS) designed the Mount Peake-Crawford survey to provide high resolution magnetic, radiometric and elevation data in the area. It is anticipated that the data from the survey would help attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits in the Northern Territory. A total of 120,000 line km of regional data (200m line spacing) and additional infill data (100m line spacing), flown at 60m flight height were acquired during the survey between July and October 2019. The survey was managed by Geoscience Australia. <p>Various grids were produced from the Mount Peake-Crawford Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. The merged grids have a cell size of 20m. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).

  • The Great Artesian Basin Research Priorities Workshop, organised by Geoscience Australia (GA), was held in Canberra on 27 and 28 April 2016. Workshop attendees represented a spectrum of stakeholders including government, policy, management, scientific and technical representatives interested in GAB-related water management. This workshop was aimed at identifying and documenting key science issues and strategies to fill hydrogeological knowledge gaps that will assist federal and state/territory governments in addressing groundwater management issues within the GAB, such as influencing the development of the next Strategic Management Plan for the GAB. This report summarises the findings out of the workshop.

  • This report is the third of three reports that provide the scientific analyses and interpretations resulting from a four-year collaborative habitat mapping program undertaken within the Darwin and Bynoe Harbour region by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government Department of Environment and Natural Resources (DENR). This program was made possible through offset funds provided by the INPEX-operated Ichthys LNG Project to DENR, and co-investments from GA and AIMS.

  • A SkyTEM airborne electromagnetic (AEM) survey was flown during the period 09 to 24 August 2017 in the Daly River Region, Northern Territory, Australia. The area is located in the 1:250000 map sheets, SD52-08 (Pine Creek), SD52-12 (Fergusson River), SD52-16 (Delamere), SD53-09 (Katherine) and SD53-13 (Larrimah) south-southeast of the city of Darwin. Approximately 3379 line kilometres of TEM and magnetic data were acquired. The projected grid coordinates have been supplied in GDA94 MGA Zone 52. The aim of the survey is to provide geophysical information to support investigations of the regional groundwater system, identify regional groundwater sources and mitigate risk in irrigation development. It will provide data to allow for the modelling of the following at a reconnaissance scale: a) trends in regolith thickness and variability b) variations in bedrock conductivity c) conductivity of key bedrock (lithology related) conductive units under cover d) the groundwater resource potential of the region

  • AusAEM 02 Airborne Electromagnetic Survey, NT /WA, 2019-2020: TEMPEST® AEM data and conductivity estimates The accompanying data package, titled “AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey: TEMPEST® airborne electromagnetic data and conductivity estimates”, was released on 10 August 2020 by Geoscience Australia (GA), the Geological Survey of Western Australia and the Northern Territory Geological Survey. The package contains processed data from the“AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey" that was flown over the North-West part of the Northern Territory across the border and all the way to the coast into Western Australia. The regional survey was flown at a 20-kilometre nominal line spacing and entailed approximately 55,675 line kilometres of geophysical data. The survey was flown in two tranches during 2019, by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. CGG also processed the data. The survey also includes a further 6,450 line kilometres of infill flying that was funded by private exploration companies, acquired in certain blocks within the survey area. The data from these infill blocks have been processed in the same manner as the regional lines and are part of this release. Geoscience Australia commissioned the AusAEM 02 survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Western Australia. Geoscience Australia (GA) leads the EFTF program, in collaboration with the State and Territory Geological Surveys of Australia. The program is designed to investigate the potential mineral, energy and groundwater resources of Australia driving the next generation of resource discoveries. GA managed the survey data acquisition, processing, contract, the quality control of the survey and generating two of the three inversion products included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shape files for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivty-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivty-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • <div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div>&nbsp;</div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div>&nbsp;</div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>