From 1 - 10 / 45
  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 2000 by the WA Government, and consisted of UNKNOWN line-kilometres of data at 100.0m line spacing and 60.0m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.002 degrees (approximately 210m). The data used to produce this grid was acquired in UNKNOWN by the WA Government, and consisted of UNKNOWN line-kilometres of data at 200.0m line spacing and 60.0m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 2000 by the SA Government, and consisted of UNKNOWN line-kilometres of data at 300.0m line spacing and 80.0m terrain clearance.

  • This dataset contains scanned geomagnetic magnetogram records from Macquarie Island Geomagnetic Observatory. Files names delineate the observatory, observation year, type of data, month range, folder and page. e.g. TOO 1985 GRAM - JUL - AUG - 73_00031 (TOO: Toolangi Observatory)(1985: Year)(GRAM: Magnetogram)(JUL - AUG: month range)(73_00031: Folder and page). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Casey (CSY). Files names delineate the observatory, observation year, type of form and folder. e.g. CSY2000OBS_19 (CSY: Casey Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic magnetogram records from Mawson Geomagnetic Observatory. Files names delineate the observatory, observation year, type of data, month range, folder and page. e.g. TOO 1985 GRAM - JUL - AUG - 73_00031 (TOO: Toolangi Observatory)(1985: Year)(GRAM: Magnetogram)(JUL - AUG: month range)(73_00031: Folder and page). Files are stored as station and year based PDF and individual tiff files per page.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.002 degrees (approximately 200m). The data used to produce this grid was acquired in UNKNOWN by the WA Government, and consisted of UNKNOWN line-kilometres of data at 300.0m line spacing and 60.0m terrain clearance.

  • The GEOPHYS_SURV database describes geophysical surveys (air, land, and marine), the datasets derived from those surveys, and the methods used for delivery of those datasets. The database includes metadata for all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as data and surveys from State and Territory geological survey agencies.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Kakadu (KDU). Files names delineate the observatory, observation year, type of form and folder. e.g. KDU2000OBS_19 (KDU: Kakadu Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.

  • This dataset contains scanned geomagnetic absolute observation records from Australian Geomagnetic Observatory: Alice Springs (ASP). Files names delineate the observatory, observation year, type of form and folder. e.g. ASP2000OBS_19 (ASP: Alice Springs Observatory)(2000: Year)(OBS: Observation Form)(19: Folder). Files are stored as station and year based PDF and individual tiff files per page.