From 1 - 10 / 63
  • Precompetitive AEM data and associated scientific analysis assists exploration under cover by reducing risk, stimulating investment and promoting exploration for commodities. In recent years, Geoscience Australia has flown three regional Airborne Electromagnetic (AEM) surveys covering three percent of Australia. Data and associated interpretations from regional surveys in the Paterson, Pine Creek and Lake Frome regions have led to tenement take up, stimulated exploration for a number of commodities and have given rise to many Eureka moments. This presentation will outline significant results from the use of Geoscience Australia AEM data and interpretations, results that have been announced by industry via the Australian Stock Exchange and other publications.

  • Orogenic gold deposits provide a significant source of the world’s gold, but their depth of formation is contentious. One hypothesis is that orogenic gold deposits formed along crustal faults over a wide range of depths spanning sub-greenschist to granulite facies. Other authors suggest that the source is restricted to a smaller range of crustal depths (~20-30 km) and temperatures (~550⁰C) that correspond to the transition from greenschist to amphibolite metamorphic facies. Rapid burial of C and S-rich oceanic sediments and amphibolite-grade metamorphism leads to the production of large amounts of fluid in a short amount of time. In order to help discriminate between these competing hypotheses, we compiled thirty years of magnetotelluric (MT) and geomagnetic depth sounding (GDS) data across western Victoria and south-eastern South Australia. This region contains one of the world’s foremost and largest orogenic gold regions that has produced 2% of historic worldwide gold production. Three-dimensional inversion of the MT and GDS data shows a remarkable correlation between orogenic gold deposits with >1 t production and a <20 ohm.m low-resistivity region at crustal depths >20 km. Such depths are at the pressures and temperatures of greenschist to amphibolite-grade metamorphism that releases HS- ligands for Au from C and pyrite (FeS2) rich sediment interbedded with mafic oceanic rocks. Carbon is then precipitated through retrograde hydration reactions with CO2 precipitating as conductive flake graphite. Thus, our model indicates that orogenic gold in western Victoria is most likely sourced from C and FeS2 rich oceanic sediments at amphibolite-grade facies. Citation: Heinson, G., Duan, J., Kirkby, A. et al. Lower crustal resistivity signature of an orogenic gold system. Sci Rep 11, 15807 (2021). https://doi.org/10.1038/s41598-021-94531-8

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric (MT) sites on a 0.5 degree (~55 km) grid across the Australian continent. Data and models produced from this program will help to inform our understanding of Australia’s lithospheric architecture and tectonic processes. The New South Wales component of AusLAMP is a collaborative project between Geoscience Australia and the Geological Survey of New South Wales. This new dataset will add to the coverage of the Victorian and South Australian AusLAMP programs, which are both complete. This presentation is prepared for the Mines and Wines Conference, 2019, and details the progress of the AusLAMP NSW program. These include data, models and preliminary interpretations that are coming out of the program. Presentation for Discovery in the Tasmanides (Mines and Wines), Wagga Wagga, NSW, 25-28 September 2019 (https://smedg.org.au/events/)

  • The AusAEM1 survey is the world’s largest airborne electromagnetic survey flown to date, extending across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60 000 line kilometres of data were acquired at a nominal line spacing of 20 km. Using this dataset, we interpreted the depth to chronostratigraphic surfaces, assembled stratigraphic relationship information, and delineated structural and electrically conductive features. Our results improved understanding of upper-crustal geology, led to 3D mapping of palaeovalleys, prompted further investigation of electrical conductors and their relationship to structural features and mineralisation, and helped us continuously connect correlative outcropping units separated by up to hundreds of kilometres. Our interpretation is designed to improve targeting and outcomes for mineral, energy and groundwater exploration, and contributes to our understanding of the chronostratigraphic, structural and upper-crustal evolution of northern Australia. More than 150 000 regional depth measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. <b>Citation:</b> Wong, S.C.T., Roach, I.C., Nicoll, M.G., English, P.M., Bonnardot, M.-A., Brodie, R.C., Rollet, N. and Ley-Cooper, A.Y., 2020. Interpretation of the AusAEM1: insights from the world’s largest airborne electromagnetic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The magnetotelluric (MT) method is increasingly being applied to map tectonic architecture and mineral systems. Under the Exploring for the Future (EFTF) program, Geoscience Australia has invested significantly in the collection of new MT data. The science outputs from these data are underpinned by an open-source data analysis and visualisation software package called MTPy. MTPy started at the University of Adelaide as a means to share academic code among the MT community. Under EFTF, we have applied software engineering best practices to the code base, including adding automated documentation and unit testing, code refactoring, workshop tutorial materials and detailed installation instructions. New functionality has been developed, targeted to support EFTF-related products, and includes data analysis and visualisation. Significant development has focused on modules to work with 3D MT inversions, including capability to export to commonly used software such as Gocad and ArcGIS. This export capability has been particularly important in supporting integration of resistivity models with other EFTF datasets. The increased functionality, and improvements to code quality and usability, have directly supported the EFTF program and assisted with uptake of MTPy among the international MT community. <b>Citation:</b> Kirkby, A.L., Zhang, F., Peacock, J., Hassan, R. and Duan, J., 2020. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This report presents key results from hydrogeological investigations in the Tennant Creek region, completed as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The EFTF Southern Stuart Corridor (SSC) Project area is located in the Northern Territory and extends in a north–south corridor from Tennant Creek to Alice Springs, encompassing four water control districts and a number of remote communities. Water allocation planning and agricultural expansion in the SSC is limited by a paucity of data and information regarding the volume and extent of groundwater resources and groundwater systems more generally. Geoscience Australia, in partnership with the Northern Territory Department of Environment and Natural Resources and Power and Water Corporation, undertook an extensive program of hydrogeological investigations in the SSC Project area between 2017 and 2019. Data acquisition included; helicopter airborne electromagnetic (AEM) and magnetic data; water bore drilling; ground-based and downhole geophysical data for mapping water content and defining geological formations; hydrochemistry for characterising groundwater systems; and landscape assessment to identify potential managed aquifer recharge (MAR) targets. This report focuses on the Tennant Creek region—part of the Barkly region of the Northern Territory. Investigations in this region utilised existing geological and geophysical data and information, which were applied in the interpretation and integration of AEM and ground-based geophysical data, as well as existing and newly acquired groundwater hydrochemical and isotope data. The AEM and borehole lithological data reveal the highly weathered (decomposed) nature of the geology, which is reflected in the hydrochemistry. These data offer revised parameters, such as lower bulk electrical conductivity values and increased potential aquifer volumes, for improved modelling of local groundwater systems. In many instances the groundwater is shown to be young and of relatively good quality (salinity generally <1000 mg/L total dissolved solids), with evidence that parts of the system are rapidly recharged by large rainfall events. The exception to this is in the Wiso Basin to the west of Tennant Creek. Here lower quality groundwater occurs extensively in the upper 100 m below ground level, but this may sit above potentially potable groundwater and that possibility should be investigated further. Faults are demonstrated to have significantly influenced the occurrence and distribution of weathered rocks and of groundwater, with implications for groundwater storage and movement. Previously unrecognised faults in the existing borefield areas should be investigated for their potential role in compartmentalising groundwater. Additionally a previously unrecognised sub-basin proximal to Tennant Creek may have potential as a groundwater resource or a target for MAR. This study has improved understanding of the quantity and character of existing groundwater resources in the region and identified a managed aquifer recharge target and potential new groundwater resources. The outcomes of the study support informed water management decisions and improved water security for communities; providing a basis for future economic investment and protection of environmental and cultural values in the Tennant Creek and broader Barkly region. Data and information related to the project are summarised in the conclusions of this report and are accessible via the EFTF portal (https://portal.ga.gov.au/).

  • Geoscience Australia (GA) is a leading promoter of airborne electromagnetic (AEM) surveying for regional mapping of cover thickness, under-cover basement geology and sedimentary basin architecture. Geoscience Australia flew three regional AEM surveys during the 2006-2011 Onshore Energy Security Program (OESP): Paterson (Western Australia, 2007-08); Pine Creek-Kombolgie (Northern Territory, 2009); and Frome (South Australia, 2010). Results from these surveys have produced a new understanding of the architecture of critical mineral system elements and mineral prospectivity (for a wide range of commodities) of these regions in the regolith, sedimentary basins and buried basement terrains. The OESP AEM survey data were processed using the National Computational Infrastructure (NCI) at the Australian National University to produce GIS-ready interpretation products and GOCADTM objects. The AEM data link scattered stratigraphic boreholes and seismic lines and allow the extrapolation of these 1D and 2D objects into 3D, often to explorable depths (~ 500 m). These data sets can then be combined with solid geology interpretations to allow researchers in government, industry and academia to build more reliable 3D models of basement geology, unconformities, the depth of weathering, structures, sedimentary facies changes and basin architecture across a wide area. The AEM data can also be used to describe the depth of weathering on unconformity surfaces that affects the geophysical signatures of underlying rocks. A number of 3D models developed at GA interpret the under-cover geology of cratons and mobile zones, the unconformity surfaces between these and the overlying sedimentary basins, and the architecture of those basins. These models are constructed primarily from AEM data using stratigraphic borehole control and show how AEM data can be used to map the cross-over area between surface geological mapping, stratigraphic drilling and seismic reflection mapping. These models can be used by minerals explorers to more confidently explore in areas of shallow to moderate sedimentary basin cover by providing more accurate cover thickness and depth to target information. The impacts of the three OESP AEM surveys are now beginning to be recognised. The success of the Paterson AEM Survey has led to the Geological Survey of Western Australia announcing a series of OESP-style regional AEM surveys for the future, the first of which (the Capricorn Orogen AEM Survey) completed acquisition in January 2014. Several new discoveries have been attributed to the OESP AEM data sets including deposits at Yeneena (copper) and Beadell (copper-lead-zinc) in the Paterson region, Thunderball (uranium) in the Pine Creek region and Farina (copper) in the Frome region. New tenements for uranium, copper and gold have also been announced on the results of these surveys. Regional AEM is now being applied in a joint State and Commonwealth Government initiative between GA, the Geological Survey of Queensland and the Geological Survey of New South Wales to assess the geology and prospectivity of the Southern Thomson Orogen around Hungerford and Eulo. These data will be used to map the depth of the unconformity between the Thomson Orogen rocks and overlying sedimentary basins, interpret the nature of covered basement rocks and provide more reliable cover thickness and depth to target information for explorers in this frontier area.

  • Airborne electromagnetic (AEM) data are an immensely useful tool for mapping cover thickness and under cover geology in Australia. The regional AEM surveys conducted by Geoscience Australia (GA) are an ideal starting point for integrating legacy AEM datasets across a range of scales with other information, e.g. borehole stratigraphy and shallow seismic data, to add to a national cover thickness map. Geoscience Australia is working towards this end as part of the UNCOVER Initiative.

  • The magnetotelluric (MT) method is increasingly being applied to mineral exploration under cover with several case studies showing that mineral systems can be imaged from the lower crust to the near surface. Driven by this success, the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is delivering long-period data on a 0.5° grid across Australia, and derived continental scale resistivity models that are helping to drive investment in mineral exploration in frontier areas. Part of this investment includes higher-resolution broadband MT surveys to enhance resolution of features of interest and improve targeting. To help gain best value for this investment it is important to have an understanding of the ability and limitations of MT to resolve features on different scales. Here we present synthetic modelling of conductive, narrow, near-vertical faults 500 m to 1500 m wide, and show that a station spacing of around 14 km across strike is sufficient to resolve these into the upper crust. However, the vertical extent of these features is not well constrained, with near-vertical planar features commonly resolved as two separate features. This highlights the need for careful interpretation of anomalies in MT inversion. In particular, in an exploration scenario, it is important to consider that a lack of interconnectivity between a lower crustal/upper mantle conductor and conductors higher up in the crust and the surface might be apparent only, and may not reflect reduced mineral prospectivity. Appeared in Exploration Geophysics Journal 05 Dec 2022

  • We present a resistivity model of the southern Tasmanides of southeastern Australia using Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) data. Modelled lower crustal conductivity anomalies resemble concentric geometries revealed in the upper crust by potential field and passive seismic data. These geometries are a key part of the crustal architecture predicted by the Lachlan Orocline model for the evolution of the southern Tasmanides, in which the Proterozoic Selwyn Block drives oroclinal rotation against the eastern Gondwana margin during the Silurian period. For the first time, we image these structures in three dimensions (3D) and show they persist below the Moho. These include a lower crustal conductor largely following the northern Selwyn Block margin. Spatial association between lower crustal conductors and both Paleozoic to Cenozoic mafic to intermediate alkaline volcanism and gold deposits suggests a genetic association i.e. fluid flow into the lower crust resulting in the deposition of conductive phases such as hydrogen, iron, sulphides and/or graphite. The 3D model resolves a different pattern of conductors in the lithospheric mantle, including northeast trending anomalies in the northern part of the model. Three of these conductors correspond to Cenozoic leucitite volcanoes along the Cosgrove mantle hotspot track which likely map the metasomatised mantle source region of these volcanoes. The northeasterly alignment of the conductors correlates with variations in the lithosphere-asthenosphere boundary (LAB) and the direction of Australian plate movement, and may be related to movement of an irregular LAB topography over the asthenosphere. By revealing the tectonic architecture of a Phanerozoic orogen and the overprint of more recent tectono-magmatic events, our resistivity model enhances our understanding of the lithospheric architecture and geodynamic processes in southeast Australia, demonstrating the ability of magnetotelluric data to image geological processes over time.