Data engineering and data science
Type of resources
Keywords
Publication year
Topics
-
<div>Disruptions to the global supply chains of critical raw materials (CRM) have the potential to delay or increase the cost of the renewable energy transition. However, for some CRM, the primary drivers of these supply chain disruptions are likely to be issues related to environmental, social, and governance (ESG) rather than geological scarcity. Herein we combine public geospatial data as mappable proxies for key ESG indicators (e.g., conservation, biodiversity, freshwater, energy, waste, land use, human development, health and safety, and governance) and a global dataset of news events to train and validate three models for predicting “conflict” events (e.g., disputes, protests, violence) that can negatively impact CRM supply chains: (1) a knowledge-driven fuzzy logic model that yields an area under the curve (AUC) for the receiver operating characteristics plot of 0.72 for the entire model; (2) a naïve Bayes model that yields an AUC of 0.81 for the test set; and (3) a deep learning model comprising stacked autoencoders and a feed-forward artificial neural network that yields an AUC of 0.91 for the test set. The high AUC of the deep learning model demonstrates that public geospatial data can accurately predict natural resources conflicts, but we show that machine learning results are biased by proxies for population density and likely underestimate the potential for conflict in remote areas. Knowledge-driven methods are the least impacted by population bias and are used to calculate an ESG rating that is then applied to a global dataset of lithium occurrences as a case study. We demonstrate that giant lithium brine deposits (i.e., >10 Mt Li2O) are restricted to regions with higher spatially situated risks relative to a subset of smaller pegmatite-hosted deposits that yield higher ESG ratings (i.e., lower risk). Our results reveal trade-offs between the sources of lithium, resource size, and spatially situated risks. We suggest that this type of geospatial ESG rating is broadly applicable to other CRM and that mapping spatially situated risks prior to mineral exploration has the potential to improve ESG outcomes and government policies that strengthen supply chains. <b>Citation:</b> Haynes M, Chudasama B, Goodenough K, Eerola T, Golev A, Zhang SE, Park J and Lèbre E (2024) Geospatial Data and Deep Learning Expose ESG Risks to Critical Raw Materials Supply: The Case of Lithium. <i>Earth Sci. Syst. Soc. </i>4:10109. doi: 10.3389/esss.2024.10109
-
<div>GeoInsight was an 18-month pilot project developed in the latter part of Geoscience Australia’s Exploring for the Future Program (2016–2024). The aim of this pilot was to develop a new approach to communicating geological information to non-technical audiences, that is, non-geoscience professionals. The pilot was developed using a human-centred design approach in which user needs were forefront considerations. Interviews and testing found that users wanted a simple and fast, plain-language experience which provided basic information and provided pathways for further research. GeoInsight’s vision is to be an accessible experience that curates information and data from across the Geoscience Australia ecosystem, helping users make decisions and refine their research approach, quickly and confidently.</div><div><br></div><div>Geoscience Australia hosts a wealth of geoscientific data, and the quantity of data available in the geosciences is expanding rapidly. This requires newly developed applications such as the GeoInsight pilot to be adaptable and malleable to changes and updates within this data. As such, utilising the existing Oracle databases, web service publication and platform development workflows currently employed within Geoscience Australia (GA) were optimal choices for data delivery for the GeoInsight pilot. This record is intended to give an overview of the how and why of the technical infrastructure of this project. It aims to summarise how the underlying databases were used for both existing and new data, as well as development of web services to supply the data to the pilot application. </div>