From 1 - 10 / 70
  • The 2004 Indian Ocean Tsunami raised the importance of tsunami as a significant emergency management issue in Australia. The Australian government responded by initiating a range of measures to help safeguard Australia from tsunami, in particular the Australian Tsunami Warning System (ATWS). In addition it is supporting fundamental research into understanding the tsunami risk to Australian communities. The Risk and Impact Analysis Group (RIAG) of Geoscience Australia achieves this through the development of computational methods, models and decision support tools for use in assessing the impact and risk posed by hazards. Together with support from Emergency Management Australia, it is developing a national tsunami hazard map based on earthquakes generated from the subduction zones surrounding Australia. These studies have highlighted sections of the coastline that appear vulnerable to events of this type. The risk is determined by the likelihood of the event and the resultant impact. Modelling the impacts from tsunami events is a complex task. The computer model ANUGA is used to simulate the propagation of a tsunami toward the coast and estimate the level of damage. A simplification is obtained by taking a hybrid approach where two models are combined: relatively simple and fast models are used to simulate the tsunami event and wave propagation through open water, while the impact from tsunami inundation is simulated with a more complex model. A critical requirement for reliable modelling is an accurate representation of the earth's surface that extends from the open ocean through the inter-tidal zone into the onshore areas. However, elevation data may come from a number of sources and will have a range of reliability.

  • The information within this document and associated DVD is intended to assist emergency managers in tsunami planning and preparation activities. The Attorney General's Department (AGD) has supported Geoscience Australia (GA) in developing a range of products to support the understanding of tsunami hazard through the Australian Tsunami Warning System Project. The work reported here is intended to further build the capacity of the QLD State Government in developing inundation models for prioritised locations. Internally stored data /nas/cds/internal/hazard_events/sudden_onset_hazards/tsunami_inundation/gold_coast/gold_coast_tsunami_scenario_2009

  • Geoscience Australia (GA) has been acquiring both broadband and long-period magnetotelluric (MT) data over the last few years along deep seismic reflection survey lines across Australia, often in collaboration with the States/Territory geological surveys and the University of Adelaide. Recently, new three-dimensional (3D) inversion code has become available from Oregon State University. This code is parallelised and has been compiled on the NCI supercomputer at the Australian National University. Much of the structure of the Earth in the regions of the seismic surveys is complex and 3D, and MT data acquired along profiles in such regions are better imaged by using 3D code rather than 1D or 2D code. Preliminary conductivity models produced from the Youanmi MT survey in Western Australia correlate well with interpreted seismic structures and contain more geological information than previous 2D models. GA has commenced a program to re-model with the new code MT data previously acquired to provide more robust information on the conductivity structure of the shallow to deep Earth in the vicinity of the seismic transects.

  • The short historical record of tropical cyclone activity in the Australian region is insufficient for estimating return period wind speeds at long return periods (greater than 100 years). Utilising the auto-correlated nature of tropical cyclone behaviour (forward speed and direction, intensity and size), Geoscience Australia has developed a statistical-parametric model of tropical cyclone behaviour to generate synthetic event sets that are statistically similar to the historical record. The track model is auto-regressive, with lag-1 auto-regression used for forward speed and bearing, and lag-2 auto-regression applied to the intensity and size characteristics. Applying a parametric wind field and a linear boundary layer model to the synthetic tropical cyclone tracks allows users to generate synthetic wind swaths, and in turn fit extreme value distributions to evaluate return period wind speeds spatially. The model has been applied to evaluate severe wind hazard across Australia and neighbouring regions. In conjunction with statistical models of synoptic (mid-latitude storms) and thunderstorm wind hazard, we have been able to generate a national assessment of severe wind hazard, which is comparable to existing wind loading design standards. Using tropical cyclone-like vortex tracks directly detected from regional climate models, it is also possible to project cyclonic wind hazard into future climate conditions, accounting for both changes in frequency and intensity of tropical cyclones.

  • Models of seabed sediment mobilisation by waves and currents over Australia's continental shelf environment are used to examine whether disturbance regimes exist in the context of the intermediate disturbance hypothesis (IDH). Our study shows that it is feasible to model the frequency and magnitude of seabed disturbance in relation to the dominant energy source (wave-dominated shelf, tide-dominated shelf or tropical cyclone dominated shelf). Areas are mapped where the recurrence interval of disturbance events is comparable to the rate of ecological succession, which meets criteria defined for a disturbance regime. We focus our attention on high-energy, patch-clearing events defined as exceeding the Shields (bed shear stress) parameter value of 0.25. Using known rates of ecological succession for different substrate types (gravel, sand, mud), predictions are made of the spatial distribution of a dimensionless ecological disturbance index (ED), given as: ED = FA (ES/RI), where ES is the ecological succession rate for different substrates, RI is the recurrence interval of disturbance events and FA is the fraction of the frame of reference (surface area) disturbed. Maps for the Australian continental shelf show small patches of ED-seafloor distributed around the continent, on both the inner and outer shelf. The patterns are different for wave-dominated (patches on the outer shelf trending parallel to the coast), tide-dominated (patches crossing the middle-shelf trending normal to the coast) and cyclone-dominated (large oval-shaped patches crossing all depths). Only a small portion of the shelf (perhaps ~10%) is characterised by a disturbance regime as defined here. To our knowledge, this is the first time such an analysis has been attempted for any continental shelf on the earth.

  • The major tsunamis of the last few years in the southern hemisphere have raised awareness of the possibility of potentially damaging tsunami to Australia and countries in the Southwest Pacific region. Here we present a probabilistic hazard assessment for Australia and for the SOPAC countries in the Southwest Pacific for tsunami generated by subduction zone earthquakes. To conduct a probabilistic tsunami hazard assessment, we first need to estimate the likelihood of a tsunamigeneic earthquake occurring. Here we will discuss and present our method of estimate the likely return period a major megathrust earthquake on each of the subduction zones surrounding the Pacific. Our method is based on the global rate of occurrence of such events and the rate of convergence and geometry of each particular subduction zone. This allows us to create a synthetic catalogue of possible megathrust earthquakes in the region with associated probabilities for each event. To calculate the resulting tsunami for each event we create a library of "unit source" tsunami for a set of 100km x 50km unit sources along each subduction zone. For each unit source, we calculate the sea floor deformation by modelling the slip along the unit source as a dislocation in a stratified, linear elastic half-space. This sea floor deformation is then fed into a tsunami propagation model to calculate the wave height off the coast for each unit source. Our propagation model uses a staggered grid, finite different scheme to solve the linear, shallow water wave equations for tsunami propagation. The tsunami from any earthquake in the synthetic catalogue can then be quickly calculated by summing the unit source tsunami from all the unit sources that fall within the rupture zone of the earthquake. The results of these calculations can then be combined with our estimate of the probability of the earthquake to produce hazard maps showing (for example) the probability of a tsunami exceeding a given height offshore from a given stretch of coastline. These hazard maps can then be used to guide emergency managers to focus their planning efforts on regions and countries which have the greatest likelihood of producing a catastrophic tsunami.

  • The aim of this document is to * outline the information management process for inundation modelling projects using ANUGA * outline the general process adopted by Geoscience Australia in modelling inundation using ANUGA * allow a future user to understand (a) how the input and output data has been stored (b) how the input data has been checked and/or manipulated before use (c) how the model has been checked for appropriateness

  • The major tsunami disaster in the Indian Ocean in 2004, and the subsequent large events off the south coast of Indonesia and in the Solomon Islands, have dramatically raised awareness of the possibility of potentially damaging tsunamis in the Australian region. Since the 2004 Indian Ocean Tsunami (IOT), a number of emergency management agencies have worked with Geoscience Australia to help to develop an understanding of the tsunami hazard faced by their jurisdictions. Here I will discuss both the major tsunamis over the last few years in the region and the recent efforts of Geoscience Australia and others to try to estimate the likelihood of such events in the future. Since 2004, a range of probabilistic and scenario based hazard assessments have been completed through collaborative projects between Geoscience Australia and other agencies in Australia and the region. These collaborations have resulted in some of the first ever probabilistic tsunami hazard assessments to be completed for Australia and for a wide range of other countries in the southwest Pacific and Indian Oceans. These assessments not only estimate the amplitude of a tsunami that could reach the coast but also its probability. The assessments allow crucial questions from emergency managers (such as 'Just how often do large tsunamis reach our coasts?) to be quantitatively addressed. In addition, they also provide a mechanism to prioritise communities for more detailed risk assessments. This work allows emergency managers to base their decisions on the best available science and data for their jurisdiction instead of relying solely on intuition.

  • Stations on the Australian continent receive a rich mixture of ambient seismic noise from the surrounding oceans and the numerous small earthquakes in the earthquake belts to the north in Indonesia, and east in Tonga-Kermadec, as well as more distant source zones. The noise field at a seismic station contains information about the structure in the vicinity of the site, and this can be exploited by applying an autocorrelation procedure to the continuous records. By creating stacked autocorrelograms of the ground motion at a single station, information on crust properties can be extracted in the form of a signal that includes the crustal reflection response convolved with the autocorrelation of the combined effect of source excitation and the instrument response. After applying suitable high pass filtering the reflection component can be extracted to reveal the most prominent reflectors in the lower crust, which often correspond to the reflection at the Moho. Because the reflection signal is stacked from arrivals from a wide range of slownesses, the reflection response is somewhat diffuse, but still sufficient to provide useful constraints on the local crust beneath a seismic station. Continuous vertical component records from 223 stations (permanent and temporary) across the continent have been processed using autocorrelograms of running windows 6 hours long with subsequent stacking. A distinctive pulse with a time offset between 8 and 30 s from zero is found in the autocorrelation results, with frequency content between 1.5 and 4 Hz suggesting P-wave multiples trapped in the crust. Synthetic modelling, with control of multiple phases, shows that a local Ppmp phase can be recovered with the autocorrelation approach. This approach can be used for crustal property extraction using just vertical component records, and effective results can be obtained with temporary deployments of just a few months.

  • One of the main outputs of the Earthquake Hazard project at Geoscience Australia is the national earthquake hazard map. The map is one of the key components of Australia's earthquake loading standard, AS1170.4. One of the important inputs to the map is the rate at which earthquakes occur in various parts of the continent. This is a function of the strain rate, or the rate of deformation, currently being experienced in different parts of Australia. This paper presents two contrasting methods of estimating the strain rate, and thus the seismicity, using the latest results from the seismology and geodynamic modelling programs within the project. The first method is based on a fairly traditional statistical analysis of an updated catalogue of Australian earthquakes. Strain rates, where measurable, were in the range of 10-16s-1 to around 10-18s-1 and were highly variable across the continent. By contrast, the second method uses a geodynamic numerical model of the Australian plate to determine its rate of deformation. This model predicted a somewhat more uniform strain rate of around 10-17s-1 across the continent. The uniformity of the true distribution of long term strain rate in Australia is likely to be somewhere between these two extremes but is probably of about this magnitude. In addition, this presentation will also give an overview of how this kind of work could be incorporated into future versions of the national earthquake hazard map in both the short and long term.