From 1 - 10 / 88
  • The Leeuwin Current has significant ecological impact on the coastal and marine ecosystem of south-western Australia. This study investigated the spatial and temporal dynamics of the Leeuwin Current using monthly MODIS SST dataset between July 2002 and December 2012. Topographic Position Index layers were derived from the SST data for the mapping of the spatial structure of the Leeuwin Current. The semi-automatic classification process involves segmentation, 'seeds' growing and manual editing. The mapping results enabled us to quantitatively examine the current's spatial and temporal dynamics in structure, strength, cross-shelf movement and chlorophyll a characteristic. It was found that the Leeuwin Current exhibits complex spatial structure, with a number of meanders, offshoots and eddies developed from the current core along its flowing path. The Leeuwin Current has a clear seasonal cycle. During austral winter, the current locates closer to the coast (near shelf break), becomes stronger in strength and has higher chlorophyll a concentrations. While, during austral summer, the current moves offshore, reduces its strength and chlorophyll a concentrations. The Leeuwin Current also has notable inter-annual variation due to ENSO events. In El Niño years the current is likely to reduce strength, move further inshore and increase its chlorophyll a concentrations. The opposite occurs during the La Niña years. In addition, this study also demonstrated that the Leeuwin Current has a significantly positive influence over the regional nutrient characteristics during the winter and autumn seasons.

  • This dataset contains sediment and geochemistry information for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 - Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • The Oceanic Shoals Commonwealth Marine Reserve (CMR) (>71,000 km2) is located in the Timor Sea and is part of the National Representative System of Marine Protected Areas of Australia. The Reserve incorporates extensive areas of carbonate banks and terraces that are recognised in the North and North West Marine Region Management Plans as Key Ecological Features (KEFs). Although poorly studied, these features have been identified as potential biodiversity hotspots for the Australian tropical north. As part of the National Environment Research Program (NERP), Geoscience Australia (GA) in collaboration with the Australian Institute of Marine Sciences (AIMS) undertook a marine biodiversity survey in 2012 to improve the knowledge of this area and better understand the importance of these KEFs. Amongst the many activities undertaken, continuous high-resolution multibeam mapping, video and still camera observations, and physical seabed sampling of four areas covering 510 km2 within the western side of the CMR was completed. Multibeam imagery reveals a high geomorphic diversity in the Oceanic Shoals CMR, with numerous banks and terraces, elevated 30 to 65 m above the generally flat seabed (~105 m water depth), that provide hard substrate for benthic communities. The surrounding plains are characterised by fields of depressions (pockmarks) formed in soft silty sediments that are generally barren of any epibenthos. A distinctive feature of many pockmarks is a linear scour mark that extends several tens of metres (up to 150 m) from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn inform on sediment processes operating in these areas and contribute to the understanding of the distribution of biodiversity. This study focused on characterising these seabed scoured depressions and investigating their potential as an environmental proxy for habitat studies. The study used ArcGIS spatial analyst tools to quantify the features and explored their potential relationships with other variables (e.g. multibeam backscatter, regional modelled bottom stress, biological abundance and presence/absence) to provide insight into their development, and contribute to a better understanding of the environment surrounding carbonate banks. Preliminary results show a relationship between pockmark types, i.e. with or without scour mark, and backscatter strength. This relationship suggests some additional shallow sub-surface control, mainly related to the presence of buried carbonate bank. In addition, the results suggest that tidal flows are redirected by the banks, leading to locally varied flow directions and 'shadowing' in the lee of the larger banks. This in turn is likely to have an influence on the observed density and abundance of benthic assemblages.

  • This web service contains information on seabed sediments and geochemistry for samples collected in 2012 from the Oceanic Shoals Commonwealth Marine Reserve in the Timor Sea under the National Environmental Research Program Marine Biodiversity Hub.

  • Geoscience Australia conducted a marine survey (GA-0345 andGA-0346 /TAN1411) in Commonwealth waters of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014. The purpose of the survey was to collect pre-competitive marine data to support a CO2 storage assessment in the Browse Basin, with particular emphasis on the integrity of seals overlying select CO2 storage plays. Data acquisition was undertaken as part of the National CO2 Infrastructure Plan (NCIP), administered by the Department of Industry and Science. The survey was conducted in 3 Legs aboard the New Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to bathymetry data acquired during survey GA0345/GA0346/TAN1411.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA0334) was to look for evidence of fault reactivation and of any past or current gas or fluid seepage at the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This data package brings together the following datasets which describe biophysical aspects of seafloor sediments: GEOCAT#74276. Underwater video footage from the Vlaming Sub-basin (GA0334). GEOCAT#76463. GA0334 Vlaming sub-basin Species identification of worms from grab. GEOCAT#78540. Vlaming Sub-Basin Marine Environmental Survey (GA-0334/S. Supporter GP 1373) (NCIP Program) - High Resolution Bathymetry grids. GEOCAT# 78550. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Chlorin analyses of seabed sediments. GEOCAT#78551. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Inorganic elements of seabed sediments. GEOCAT#78552. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Bulk organic carbon and nitrogen isotopes and concentrations in seabed sediments. GEOCAT#78553. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Sediment oxygen demand of seabed sediments. GEOCAT#78564. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Chlorophyll a, b and c of seabed sediments. GEOCAT#78565. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: %carbonate and specific surface area of seabed sediments. GEOCAT#79176. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia: Grain size and carbonate concentrations of seabed sediments. GEOCAT#79345. Ecology / Infaunal morphospecies identifications from the Vlaming Sub-basin (GA0334). An account of the field operations is published in: GEOCAT 74626. Nicholas, W. A., Borissova, I., Radke, L., Tran, M., Bernardel, G., Jorgensen, D M., Siwabessy, J., Carroll, A. and Whiteway, T., 2012. Seabed Environments and Shallow Geology of the Vlaming Sub-Basin, Western Australia - Marine data for the Investigation of the Geological Storage of CO2. GA0334 Post-Survey Report. Geoscience Australia, Record 2013/09. A preliminary interpretation of seabed data is provided in: GEOCAT 78846. Nicholas, W. A., Howard, F., Carroll, A., Siwabessy, J., Tran, M., Picard, K., Przeslawski, R. and Radke, L. 2014. Seabed Environments and shallow sub-surface geology of the Vlaming Sub-basin, offshore Perth Basin: summary report on observed and potential seepage, and habitats. Geoscience Australia, Record 2014/XXX. Information on the broader study, evaluating the Vlaming Sub-basin CO2 storage potential and providing details of the suitable storage sites, is available in: GEOCAT 79332. Borissova, I, Lech, M.E., Jorgensen, D.C, Southby, C., Wang, L., Bernardel, G., Nicholas, T., Lescinsky, D.L. and Johnston, S. An integrated study of the CO2 storage potential in the offshore Vlaming Sub-basin. Geoscience Australia, Record 2014/XXX.

  • This report provides details of activities undertaken by the Australian Institute of Marine Science (AIMS), Geoscience Australia, the University of Western Australia and the Museum and Art Gallery of the Northern Territory during a marine biodiversity survey to the Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) in 2012. The survey was an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and is a key component of Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Data collected during the survey will be used to support research being undertaken in other Themes of the Marine Biodiversity Hub, including the modelling of ecosystem processes for the northern region, and to support the work programs of the Department of Environment.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises sediment oxygen demand measurments from seabed sediments.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises chlorophyll a, b and c from seabed sediments (0-0.5cm).

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises %carbonate and specific surface area of seabed sediments.