From 1 - 10 / 46
  • This web service displays the results of a marine survey conducted by Geoscience Australia in Commonwealth waters of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014. The additional codes GA-0345 and GA-0346 refer to Geoscience Australia (GA) internal codes and TAN1411 is the vessel survey number given by the RV Tangaroa for 2014.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises sparker sub bottom profiles processed as shallow, high resolution, multichannel seismic reflection data (SEG-Y format), navigation files (P190) and stacking velocities.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to sediment oxygen demand measurements undertaken on seabed sediments (0-2 cm).

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to chlorophyll a, b, c and phaeophytin a conentrations in the upper 2 cm of seabed sediments.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to porosity, total chlorin and chlorin index data from the upper 2 cm of seabed sediments.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to Autonomous Underwater Vehicle (AUV) still image data acquired during survey GA0345/GA0346/TAN1411. Following mapping with the shipboard multibeam, higher-resolution multibeam data were acquired in targeted areas using a Kongsberg Simrad EM2000 system mounted to the Fugro Echo Surveyor V (ES-5) AUV. This instrument had a depth rating of 3000 m, and surveyed the seafloor according to a pre-programmed mission plan. The AUV was fitted with a camera and light system designed to produce images of equal width and height (in the context of this survey, the images comprised 8 m by 8 m of seafloor). The equipment consisted of a light sensitive NEO 11 Megapixel 35 mm monochrome CCD (4008 x 2672) camera and two LED panels, each comprising 360 LEDs. High-resolution multibeam bathymetric data was collected together with side scan sonar and sub bottom profile data at an elevation of 30 m above the seafloor, and at line spacing's of 100 m. Overlapping high-resolution still photographs (captured every second) were then acquired on the survey lines at an elevation of 8 m above the seafloor. The AUV was equipped with an advanced real-time Aided Inertial Navigation System, which calculated the position, velocity and altitude of the vehicle and a HiPAP 500 USBL system was used to acoustically position the AUV. Underwater imagery was collected from two AUV missions in study Areas 3 and 4. During the 2nd AUV mission on 22 October, the vehicle encountered an obstruction on the seabed and became trapped despite commencing an emergency ascent sequence. The AUV was subsequently recovered from the seabed during salvage operations incorporated into the ROV phase of survey operations. A total of 24 877 still images were acquired in Area 3 and 20 743 in Area 4 over 58 and 56 line kilometres, respectively. Still images (.jpg files) are located in folder 'TAN1411_AUV_STILLS' with sub-folders named according to gear code (AUV= Autonomous Underwater Vehicle), mission and study Area (e.g. AUV_M2_A3 = still images acquired during AUV mission 2 in Area 3). USBL (Ultra-short baseline) text files (`TileCam.idx) are located in each sub-folder and provide continuous navigational information on location, time (UTC) and depth of AUV still imagery transect lines.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to grain size data and carbonate concentrations of the upper ~2cm of seabed sediment. Sediment samples were first wet sieved to determine the proportions of mud, sand and gravel as a percentage. By wet sieving fine particles are removed from the sand and gravel fractions, allowing an accurate measurement each component. The mud, sand, gravel percentages were also used to derive Folk sediment texture classifications for each sample (Folk, 1980). The grain size of the mud fraction (<63 m) was determined using a Mastersizer laser granulometer. Sediment > 63 um diameter were dried, and dry sieved at values between 4 and -4 phi corresponding to the Wentworth (1922) grain size boundaries between the major sediment classes. The samples were then submitted for measurement of carbonate content by mass using the carbonate digestion method described in Müller and Gastner (1971).

  • As part of the National CO2 Infrastructure Plan (NCIP) Geoscience Australia is undertaking evaluation of the Gage Sandstone and the overlying South Perth Shale for the long-term storage of CO2. Initial assessment of the seismic data identified widespread fault reactivation and seismic anomalies potentially indicating hydrocarbon seepage. Some of the seismic anomalies clearly correlate with reactivated faults, but not all of them. The study highlights the importance of developing a detailed understanding of spatial variability in seal quality and history of fault reactivation both for petroleum exploration and CO2 storage assessments.

  • Introduction This National Carbon Infrastructure Plan study assesses the suitability of the Vlaming Sub-basin for CO2 storage. The Vlaming Sub-basin is a Mesozoic depocentre within the offshore southern Perth Basin, Western Australia (Figure 1). It is around 23,000 km2 and contains up to 14 km of sediments. The Early Cretaceous Gage Sandstone was deposited in paleo-topographic lows of the Valanginian breakup unconformity and is overlain by the South Perth Shale regional seal. Together, these formations are the most prospective reservoir/seal pair for CO2 storage. The Gage Sandstone reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. It lies mostly from 1000 - 3000 m below the seafloor, which is suitable for injection of supercritical CO2 and makes it an attractive target as a long-term storage reservoir. Methods & datasets To characterise the Gage reservoir, a detailed sequence stratigraphic analysis was conducted integrating 2D seismic interpretation, well log analysis and new biostratigraphic data (MacPhail, 2012). Paleogeographic reconstructions of components of the Gage Lowstand Systems Tract (LST) are based on seismic facies mapping, and well log and seismic interpretations. Results The Gage reservoir is a low stand systems tract that largely coincides with the Gage Sandstone and is defined by the presence of the lower G. mutabilis dinoflagellate zone. A palynological review of 6 wells led to a significant revision, at the local scale, of the Valanginian Unconformity and the extent of the G. mutabilis dinoflagellate zones (MacPhail, 2012). G. mutabilis dinoflagellates were originally deposited in lagoonal (or similar) environments and were subsequently redeposited in a restricted marine environment via mass transport flows. Mapping of the shelf break indicates that the Gage LST was deposited in water depths of >400 m. Intersected in 8 wells, the Gage LST forms part of a sand-rich submarine fan system (Figure 2) that includes channelized turbidites, low stand fan deposits, debris flows (Table 1). This interpretation is broadly consistent with Spring & Newell (1993) and Causebrook (2006). The Gage LST is thickest (up to 360 m) at the mouth of large canyons adjacent to the Badaminna Fault Zone (BFZ) and on the undulating basin plain west of Warnbro 1 (Figure 1). Paleogeographic maps depict the evolution of the submarine fan system (Figure 3). Sediment transport directions feeding the Gage LST are complex. Unit A is sourced from the northern canyon (Figure 3a). Subsequently, Unit B (Figure 3b) derived sediment from multiple directions including incised canyons adjacent to BFZ and E-W oriented canyons eroding into the Badaminna high. These coalesce on an undulating basin plain west of Warnbro 1. Minor additional input for the uppermost Unit C (Figure 3c) is derived from sources near Challenger 1. Summary 1: The Gage LST is an Early Cretaceous submarine fan system that began deposition during the G. mutabilis dinoflagellate zone. It ranges from confined canyon fill to outer fan deposits on an undulating basin plain. 2: The 3 units within the Gage LST show multidirectional sediment sources. The dominant supply is via large canyons running north-south adjacent to the Badaminna Fault Zone. 3: Seismic facies interpretations and palaeogeographic mapping show that the best quality reservoirs for potential CO2 storage are located in the outer fan (Unit C sub-unit 3) and the mounded canyon fill (Unit A). These are more likely to be laterally connected. 4: The defined units and palaeogeographic maps will be used in a regional reservoir model to estimate the storage capacity of the Gage LST reservoir.

  • The Vlaming Sub-basin Marine Survey GA-0334 was undertaken in March and April 2012 as part of the Commonwealth Government's National CO2 Infrastructure Plan (NCIP). The purpose was to acquire geophysical and biophysical data to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. This dataset contains identifications of animals collected from 32 Van Veen grabs deployed during GA-0334. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification (see `lineage'). During sorting, all worms were separated and sent to Infaunal Data Pty Ltd (Lynda Avery) for identification to species or operational taxonomic unit (OTU). Lynda Avery completed identifications on 17 April 2013, and specimens were lodged at the Museum of Victoria. All other taxa were identified to morphospecies at GA by an ecologist. Gray shading indicates taxa identified to species level by Lynda Avery (Refer to GeoCat # 76463 for raw data of species identifications by taxonomist); all other taxa were identified to morphospecies. Data is presented here exactly as delivered by the taxonomist/ecologist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications. Stations are named XXGRYY where XX indicates the station number, GR indicates Van Veen grabs, and YY indicates the sequence of grabs deployed (i.e. the YYth grab on the entire survey). H indicates heavy fraction animals and HS indicates animals found on a sponge. The dataset is current as of November 2014, but will be updated as taxonomic experts contribute. See GA Record 2013/09 for further details on survey methods and specimen acquisition.