From 1 - 10 / 27
  • Summary of last 12 months activity in Acreage Release Area.

  • This animation illustrates the various stages of development of Hot Rock geothermal resources for electricity generation. The animations were produced in GAV by the 3D animator, using 3D Studio Max software. Professional voice-over has been added, as well as sound effects. This version is based on the original version - 08-3385, geocat no.68461.

  • High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topoloty or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, et.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited filed data and industry expertise. Methods: This paper presents a noval methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology explicitly addresses the highly direction-sensitive nature of tower/conductor vulnerability which varies greatly. It has involved the development of a vulnnerability methodology and heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results. This has been achieved through consultation with industry...

  • To provide the solar power industry with a data resource to allow them to assess the economic potential of a site for a solar power plant. Specifically under the Solar Flagship program.

  • High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topography or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, el.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited field data and industry expertise.

  • PowerPoint presentations presented at the NORTH QUEENSLAND SEISMIC AND MT WORKSHOP in Townsville, June 2009.

  • This document outlines Geoscience Australia's Onshore Energy Security Program and a working plan for its implementation over five years commencing August 2006. Part 1 summarises the budget, principles of the Program, consultation, objectives, outputs, program governance and structure, and communication. Part 2 outlines the plan of activities for each of the five years, and describes where some of the major datasets will be acquired, including radiometric, seismic reflection, airborne electromagnetic and geochemical data. Part 3 describes in brief the national and regional projects. The national projects are: Uranium, Geothermal, Onshore Hydrocarbons, and Thorium. The first four regional projects of the Program, in Queensland, South Australia, Northern Territory and northern Western Australia, are summarised. Appendix 1 outlines the objectives of current seismic reflection data acquisition as well as proposed and possible seismic reflection surveys. Appendix 2 outlines proposed and possible airborne electromagnetic surveys.

  • Presented to the Association of Mining and Exploration Companies (AMEC), Perth, March 2007

  • The Australian Solar Energy Information System V2.0 has been developed as a collaborative project between Geoscience Australia and the Bureau of Meteorology. The product provides pre-competitive spatial information for investigations into suitable locations for solar energy infrastructure. The outcome of this project will be the production of new and improved solar resource data, to be used by solar researchers and the Australian solar power industry. it is aimed to facilitate broad analysis of both physical and socio-economic data parameters which will assist the solar industry to identify regions best suited for development of solar energy generation. It also has increased the quality and availability of national coverage solar exposure data, through the improved calibration and validation of satellite based solar exposure gridded data. The project is funded by the Australian Renewable Energy Agency. The ASEIS V2.0 has a solar database of resource mapping data which records and/or map the following Solar Exposure over a large temporal range, energy networks, infrastructure, water sources and other relevant data. ASEIS V2.0 has additional solar exposure data provided by the Bureau of Meteorology. - Australian Daily Gridded Solar Exposure Data now ranges from 1990 to 2012 - Australian Monthly Solar Exposure Gridded Data now ranges from 1990 to 2011 ASEIS V2.0 also has a new electricity transmission reference dataset which allows for information to be assessed on any chosen region the distance and bearing angle to the closest transmission powerline.

  • Note: A more recent version of this product is available. This dataset contains the high voltage electricity transmission lines that make up the electricity transmission network in Australia. For government use only. Access through negotiation with Geoscience Australia