From 1 - 10 / 1259
  • Mineral deposits, although geographically small in extent, are the result of processes-which together form a mineral system-that occur, and can be mapped at, a variety of scales, up to craton-scale and larger. The mineral system approach has the benefit that in it focuses on critical processes and can include larger scales not always considered. Understanding the four-dimensional evolution of the crust, for example, is important, as it can provide critical constraints on the geodynamic history, the lithospheric architecture and development, and potentially identify metallogenic terranes. Constraining the nature and evolution of the crust is not easy, however, given its largely inaccessible nature. Just as the study of basaltic rocks has provided insight into the earth's mantle, granites, provide a window into the middle and lower continental crust. Studies of these rocks are enhanced by the use of isotopic tracers (e.g., U-Pb, Sm-Nd, Lu-Hf), long used to provide constraints on geological processes and components involved in those processes.

  • The Coompana Province is one of the most poorly understood pieces of crystalline basement geology in the Australian continent. It lies entirely concealed beneath a variable thickness of Neoproterozoic to Cenozoic sedimentary rocks, and is situated between the Gawler Craton to the east, the Musgrave Province to the north, and the Madura and Albany-Fraser Provinces to the west. A recently-acquired reflection seismic transect (13GA-EG1) provides an east-west cross-section through the southern part of the Coompana Province, and yields new insights into the thickness, seismic character and gross structural geometry within the Coompana Province. To assist geological interpretation of the 13GA-EG1 seismic line, new SHRIMP U-Pb zircon ages have been acquired from samples from the limited drill-holes that intersect the Coompana Province. New results from several granitic and gneissic rocks from the Coompana Province yield magmatic and/or high-grade metamorphic ages in the interval 1100 1200 Ma. Magmatic or high-grade metamorphic ages in this interval have not been identified in the Gawler Craton, in which the last major magmatic and metamorphic event took place at ~1590 1570 Ma. The Gawler Craton was largely unaffected by ~1100 1200 Ma events, as evidenced by the preservation of pre-1400 Ma 40Ar/39Ar cooling ages. In contrast, magmatic and metamorphic ages of 1100 1200 Ma are characteristic of the Musgrave Province (Pitjantjatjara Supersuite) and Madura Province (Moodini Supersuite). The new results from the Coompana Province have also yielded magmatic or inherited zircon ages at ~1500 Ma and ~1640 Ma. Once again, these ages are not characteristic of the Gawler Craton and no pre-1700 Ma inherited zircon has been identified in Coompana Province magmatic rocks, as might be expected if the province was underlain by older, Gawler Craton-like crust. The emerging picture from this study and recent work from the Madura Province and the Forrest Zone of the western Coompana Province is that the Coompana Province has a geological history that is quite distinct from, and generally younger than, the Gawler Craton to its east, but that is very similar to the Musgrave and Madura Provinces to the north and west. The contact between the Coompana Province and the Gawler Craton is interpreted in the 13GA-EG1 seismic line as a prominent west-dipping crustal-scale structure, termed the Jindarnga Shear Zone. The nature and timing of this boundary remain relatively poorly constrained, but the seismic and geochronological evidence suggests that it represents the western edge of the Gawler Craton, marking the western limit of an older, more isotopically evolved and multiply re-worked craton to the east, from a younger, more isotopically primitive crust that separates the South Australian Craton from the West Australian Craton.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). This radiometric uranium image has a cell size of 0.0004 degrees (approximately 41m) and shows uranium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of parts per million (or ppm). Noise-adjusted singular value decomposition (NASVD) has been applied to the data. NASVD is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The total dose rate is due to natural sources of radiation and is computed by adding estimates of cosmic dose at ground level to the terrestrial dose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered total dose rate grid. This Gawler Craton Airborne Survey Merge Radiometrics has a cell size of 0.0004 degrees (approximately 41m) and shows the total dose rate of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. The data used to produce this grid was acquired in 2017-2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • The Habanero Enhanced Geothermal System (EGS) in central Australia has been under development since 2002, with several deep (more than 4000 m) wells drilled to date into the high-heat-producing granites of the Big Lake Suite. Multiple hydraulic stimulations have been performed to improve the existing fracture permeability in the granite. Stimulation of the newly-drilled Habanero-4 well (H-4) was completed in late 2012, and micro-seismic data indicated an increase in total stimulated reservoir area to approximately 4 km². Two well doublets have been tested, initially between Habanero-1 (H-1) and Habanero-3 (H-3), and more recently, between H-1 and H-4. Both doublets effectively operated as closed systems, and excluding short-term flow tests, all production fluids were re-injected into the reservoir at depth. Two inter-well tracer tests have been conducted: the first in 2008, and the most recent one in June 2013, which involved injecting 100 kg of 2,6 naphthalene-disulfonate (NDS) into H-1 to evaluate the hydraulic characteristics of the newly-created H-1/H-4 doublet. After correcting for flow hiatuses and non-steady-state flow conditions, tracer breakthrough in H-4 was observed after 6 days (compared to ~4 days for the previous H-1/H-3 doublet), with peak breakthrough occurring after 17 days. Extrapolation of the breakthrough curve to late time indicates that approximately 60% of the tracer mass would eventually be recovered (vs. approximately 80% for the 2008 H-1/H-3 tracer test). This suggests that a large proportion of the tracer may lie trapped in the opposite end of the reservoir from H-4 and/or may have been lost to the far field. The calculated inter-well swept pore volume is approximately 31,000 m³, which is larger than that calculated for the H-1/H-3 doublet (~20,000 m³). A simple 2D TOUGH2 tracer model, with model geometry constructed based on the current conceptual understanding of the Habanero EGS system, demonstrates good agreement with the measured tracer returns in terms of timing of breakthrough in H-4, and observed tracer dispersion in the tail of the breakthrough curve.

  • Geoscience Australia in collaboration with the Geological Survey of Western Australia (Royalties for Regions Exploration Incentive Scheme), the Department of State Development South Australia and AuScope funded the Eucla-Gawler 2D deep seismic survey. The seismic survey acquisition and processing were managed and processed by Geoscience Australia. Geokinetics Australasia Ltd were contracted to collect the Eucla-Gawler 2D deep seismic reflection survey from November 2013 to February 2014. Deep seismic reflection data and gravity readings were acquired along the 834 km seismic line. Magnetotelluric (MT) data (Duan et al, 2015) were also acquired along the seismic line after the completion of the seismic survey. The main objectives of the project are to acquire deep crustal seismic data to (Geoscience Australia, 2013): (1) Image the crustal architecture of the geology underlying the Eucla Basin and its relationship to the Gawler Craton to the east and the Yilgarn Craton to the west; (2) Establish the subsurface extent of the Eucla Basin and look for large structural zones that may have provided fluid pathways for mineralisation.

  • Diagram produced for the Department of Industry and Science to depict those areas of water adjacent to SA that fall under the OPGGS Act, Petroeum (Seas and Submerged Lands) Act 1982 (SA) and Petroleum and Geothermal Energy Act 2000 (SA).

  • Airborne LiDAR data was acquired over Adelaide in September 2008 and North Adelaide in September 2011. Differences in the level of classification reduced the ability to integrate the data into an accurate, seamless and consistent coastal DEM suitable for detailed modelling the potential impacts of coastal inundation or riverine flooding. The objective of this project was to reclassify both the 2008 and 2011 point clouds to ICSM Level 3 and derive hydro flattened 1m bare earth DEMs and; 0.25m cartographic contours, all inline with the ICSM LiDAR Acquisition Specifications.

  • The Bremer Basin underlies part of the upper continental slope of offshore southwest Australia. It occupies an area of 9000 km2, and contains a sedimentary pile probably 10 km thick in water depths of 200-3000 m. Though not tested by drilling, the basin is covered by a grid of seismic data. By analogy with the Eyre Sub-basin to the east, the Bremer Basin probably contains Late Jurassic to Barremian continental deposits overlain by Albian and Late Cretaceous marine deposits with a veneer of Tertiary open-marine carbonates of variable thickness. The Bremer Basin formed during the period of continental extension that preceded the breakup of Australia and Antarctica in the mid-Cretaceous. However, Triassic (?and older) extension and spreading events in the Perth Basin, a short distance to the west, are likely to have influenced its evolution. Basement structural trends in the basin indicate an old east-west-trending (?Palaeozoic) fabric that has been overprinted by north-northwesterly oriented Jurassic-Cretaceous extension and wrenching. The resultant structure is complex, particularly where the Palaeozoic and Mesozoic trends intersect. The hydrocarbon potential of the Bremer Basin is currently unknown. However, by analogy with the Eyre Sub-basin, potential source and reservoir sections can be inferred to exist, although the presence of a regional seal and a heatflow regime adequate for the generation of hydrocarbons is less certain. Potential trapping mechanisms for hydrocarbons include wrench-induced anticlines, clastic aprons adjacent to boundary and transfer faults, and stratigraphic traps within dipping Neocomian rocks beneath a major angular unconformity.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The total dose rate is due to natural sources of radiation and is computed by adding estimates of cosmic dose at ground level to the terrestrial dose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered total dose rate grid. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems. This Kingoonya - dose rate no nasvd grid (AWAGS) has a cell size of 0.0004 degrees (approximately 41m) and shows the total dose rate of the Kingoonya Airborne Magnetic Radiometric and DEM survey, SA, 2018 survey. The data used to produce this grid was acquired in 2018 by the SA Government, and consisted of 149477 line-kilometres of data at 200m line spacing and 60m terrain clearance.