From 1 - 10 / 94
  • Freshwater coastal aquifers provide an important resource for irrigated agriculture, human consumption and the natural environment. Approximately 18 million people live within 50 km of the coast in Australia, and many coastal communities are reliant on groundwater. These coastal aquifers are vulnerable to seawater intrusion (SWI) - the landward encroachment of seawater - due to their close proximity to the ocean. To assess the threat of SWI in Australia, a comprehensive literature review was undertaken with input from state/territory agencies. The literature review, in combination with contributions from stakeholders, identified sites within each of the states and the Northern Territory where SWI had been reported or where it was considered to be a serious threat. International Association of Hydrogeologists 2013 Congress poster

  • The Stavely Project is a collaborative project between Geoscience Australia and the Geological Survey of Victoria, which aims to provide a framework for exploration and discovery in the Grampians-Stavely Zone of western Victoria, through the acquisition of pre-competitive geoscientific data. This includes the completion of fourteen stratigraphic drill holes which tested regional geological interpretations and recovered material for detailed geoscientific analysis (Schofield et al., 2015). The new information derived from these stratigraphic drill holes has been incorporated into a 3D geological model which covers a volume of 62 km (E-W) × 94 km (N-S) × 8 km (depth) across the Grampians-Stavely Zone. The focus of this 3D geological model is on the geological units considered to be cover sequences that overly prospective rocks of the Mount Stavely Volcanic Complex. The Mount Stavely Volcanic Complex is considered to be prospective for porphyry Cu-Au and volcanic-hosted massive sulphide mineral systems. Within the volume of interest the units being modelled as cover sequences include the Murray Basin sediments, Grampians Group sediments, Rocklands Volcanic Group and the Newer Volcanic Group basalts. GeoModeller 2014 software was used to create the 3D geological model. GeoModeller utilises an interpolator method for creating 3D geology that is based on potential field theory (Chilès et al., 2004; McInerny et al. 2005). The 3D geological model provides a space where interpretations from multiple datasets can be represented together. Information used to constrain this model includes surface geology (1:50k mapping), stratigraphic drill-holes (VIMP and Stavely), and interpretations from seismic reflection, gravity and magnetic data.

  • In July 2010, Geoscience Australia and CSIRO Marine & Atmospheric Research jointly commissioned a new atmospheric composition monitoring station, named Arcturus, in sub-tropical Queensland, Australia. The facility is designed as a proto-type remotely operated `baseline monitoring station' that could be deployed in areas that are likely targets for commercial scale geological storage of carbon dioxide. A key question, given the ecosystem and anthropogenic sources of CO2 in the region, and the absence of a 'clean-wind' sector baseline, is how large would a CO2 leak have to be from a geological storage site before it can be detected above the background CO2 signal? To address this, CO2 leak simulation modelling was performed for 1-year period using the coupled prognostic meteorological and air pollution model TAPM at various locations, emission rates and distances (1-10 km) from the station.

  • The Oceanic Shoals Commonwealth Marine Reserve (CMR) (>71,000 km2) is located in the Timor Sea and is part of the National Representative System of Marine Protected Areas of Australia. The Reserve incorporates extensive areas of carbonate banks and terraces that are recognised in the North and North West Marine Region Plans as Key Ecological Features (KEFs). Although poorly studied, these banks and terraces have been identified as potential biodiversity hotspots for the Australian tropical north. As part of the National Environment Research Program Marine Biodiversity Hub, Geoscience Australia in collaboration with the Australian Institute of Marine Science undertook a marine biodiversity survey in 2012 to improve the knowledge of this area and better understand the importance of these KEFs. Amongst the many activities undertaken, continuous high-resolution multibeam mapping, video and still camera observations, and physical seabed sampling of four areas covering 510 km2 within the western side of the CMR was completed. Multibeam imagery reveals a high geomorphic diversity in the Oceanic Shoals CMR, with numerous banks and terraces, elevated 30 to 65 m above the generally flat seabed (~105 m water depth), that provide hard substrate for benthic communities. The surrounding plains are characterised by fields of depressions up to 1 m deep (pockmarks) formed in soft silty sediments that are generally barren of any epibenthos (Fig .1). A distinctive feature of many pockmarks is a linear scour mark that extends several tens of metres (up to 150 m) from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn inform on sediment processes operating in these areas and contribute to the understanding of the distribution of biodiversity. This study focused on characterising these seabed scoured depressions and investigating their potential as an environmental proxy for habitat studies. We used ArcGIS spatial analyst tools to quantify the features and explored their potential relationships with other variables (multibeam backscatter, regional modelled bottom stress, biological abundance and presence/absence) to provide insight into their development, and contribute to a better understanding of the environment surrounding carbonate banks. Preliminary results show a relationship between pockmark types, (i.e. with or without scour mark) and backscatter strength. This relationship suggests some additional shallow sub-surface control, mainly related to the presence of buried carbonate banks. In addition, the results suggest that tidal flows are redirected by the banks, leading to locally varied flow directions and 'shadowing' in the lee of the larger banks. This in turn is likely to have an influence on the observed density and abundance of benthic assemblages.

  • Joining Geoscience Australia's Graduate Program is an exciting opportunity to learn about the diverse earth science disciplines work for the nation's leading government geoscience research and information agency. Posters and Flyers.

  • Back wall poster display in the library celebrating Library and Information Week 2014

  • Joining Geoscience Australia's Graduate Program is an exciting opportunity to learn about the diverse earth science disciplines work for the nation's leading government geoscience research and information agency. Posters and Flyers.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 In this study, a multi-disciplinary systems mapping approach has completely revised our understanding of the age, stratigraphy, mode of deposition and landscape evolution of Lower Darling Valley (LDV) sediments within the north-western Murray Basin. The Cenozoic sequence in this area contains Paleogene and Neogene shallow marine, fluvial and shoreline sediments overlain by Quaternary lacustrine, aeolian and fluvial units. The surficial Quaternary fluvial units of the valley form a complex group of morphostratigraphic units which vary in their distribution, character and geomorphic expression through the study area. Resolving the distribution of these units has been particularly important for understanding surface-groundwater interactions. In the LDV Quaternary fluvial sequence, multiple scroll-plain tracts are incised into higher, older more featureless floodplains. Prior to this study, these were respectively correlated to the Coonambidgal and Shepparton Formations of the Riverine Plain in the eastern Murray Basin and associated with the subsequently discarded Prior Stream/Ancestral River chronosequence of different climatically controlled depositional styles. In contrast to that proposition, we ascribe all LDV Quaternary fluvial deposition to lateral-migration depositional phases of one style, though with more variable stream discharges and channel and meander-scroll dimensions. Successively higher overbank-mud deposition through time obscures scroll traces and provides the main ongoing morphologic difference. A new morphostratigraphic unit, the Menindee Formation, refers to the mostly older and higher floodplain sediments, where scroll traces are obscured by overbank mud which continues to be deposited by the highest modern floods. Younger inset scroll-plain tracts, with visible scroll-plain traces, are still referred to the Coonambidgal Formation. Another new stratigraphic unit, the Willotia beds, refers to even older fluvial sediments, now above modern floodplain levels and mostly covered by aeolian sediments. This work provides important insights into the nature of Australian Quaternary fluvial deposition, with important implications for hydrogeological processes, groundwater resources and the assessment of managed aquifer recharge options.