National Hydrogeological Inventory
Type of resources
Keywords
Publication year
Topics
-
This Daly Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Daly Basin is a geological formation consisting of Cambrian to Ordovician carbonate and siliciclastic rocks, formed approximately 541 million to 470 million years ago. The basin stretches about 170 km in length and 30 km in width, shaped as a northwest elongated synform with gentle dips of less than 1 degree, likely due to prolonged sedimentary deposition in the shallow seas of the Centralian Superbasin, possibly along basin-scale faults. The primary groundwater reservoir within the Daly Basin is found in the Cambrian Daly River Group. This group comprises three units: the Tindall Limestone, Jinduckin Formation, and Oolloo Dolostone. The Tindall Limestone, which lies at the base, consists of grey, mottled limestone with some maroon-green siltstone or dark grey mudstone. The transition from the Tindall Limestone to the overlying Jinduckin Formation is marked by a shift from limestone to more siliciclastic rocks, indicating a change from open-shelf marine to peri-tidal environments. The Jinduckin Formation, situated above the Tindall Limestone, is composed of maroon-green dolomitic-siliciclastic siltstone with interbeds of dolomitic sandstone-siltstone, as well as dolostone and dolomitic quartz sandstone lenses. It gradually transitions into the carbonate-rich Oolloo Dolostone, with the highest finely laminated dolomitic sandstone-siltstone interbeds at the top of the Jinduckin Formation. The Oolloo Dolostone, the uppermost unit of the Daly River Group, comprises two members: the well-bedded lower Briggs Member, consisting of fine- to medium-grained crystalline dolostone and dolomitic quartz sandstone, and the massive upper King Member. Overlying the Daly River Group is the Ordovician Florina Formation, consisting of three carbonate intervals separated by two fine-grained, glauconite-bearing quartz sandstone units. The Florina Formation and the Daly River Group are covered unconformably by Cretaceous claystone and sandstone of the Carpentaria Basin, which extends over a significant portion of the Daly Basin.
-
This Bowen Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bowen Basin is part of the Sydney–Gunnedah–Bowen basin system and contains up to 10,000 m of continental and shallow marine sedimentary rocks, including substantial deposits of black coal. The basin's evolution has been influenced by tectonic processes initiated by the New England Orogen, commencing with a phase of mechanical extension, and later evolving to a back-arc setting associated with a convergent plate margin. Three main phases of basin development have been identified; 1) Early Permian: Characterized by mechanical extension, half-graben development, thick volcanic units and fluvio-lacustrine sediments and coal deposits. 2) Mid Permian: A thermal relaxation event led to the deposition of marine and fluvio-deltaic sediments, ending with a regional unconformity. 3) Late Permian and Triassic: Foreland loading created a foreland basin setting with various depositional environments and sediment types, including included fluvial, marginal marine, deltaic and marine sediments along with some coal deposits in the late Permian, and fluvial and lacustrine sediments in the Triassic. Late Permian peat swamps led to the formation of extensive coal seams dominating the Blackwater Group. In the Triassic, fluvial and lacustrine deposition associated with foreland loading formed the Rewan Formation, Clematis Sandstone Group, and Moolayember Formation. The basin is a significant coal-bearing region with over 100 hydrocarbon accumulations, of which about one third are producing fields. The Surat Basin overlies the southern Bowen Basin and contains varied sedimentary assemblages hosting regional-scale aquifer systems. Cenozoic cover to the Bowen Basin includes a variety of sedimentary and volcanic rock units. Palaeogene and Neogene sediments mainly form discontinuous units across the basin. Three of these units are associated with small eponymous Cenozoic basins (the Duaringa, Emerald and Biloela basins). Unnamed sedimentary cover includes Quaternary alluvium, colluvium, lacustrine and estuarine deposits; Palaeogene-Neogene alluvium, sand plains, and duricrusts. There are also various Cenozoic intraplate volcanics across the Bowen Basin, including central volcanic- and lava-field provinces.
-
This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Nicholson Basin is a Mesoproterozoic sedimentary basin spanning Queensland and the Northern Territory and is bordered by neighbouring provinces and basins. The basin unconformably overlies the Lawn Hill Platform of the Mount Isa Province to the east, is bound by the Warramunga and Davenport provinces to the south-west, the Murphy Province to the north and the McArthur Basin to the north-west. It extends southwards under younger cover sequences. Rock units in the basin are correlated with the Roper Group in the McArthur Basin, forming the 'Roper Superbasin.' The underlying Mount Isa Province contains potential shale gas resources. The basin mainly consists of sandstone- and siltstone-bearing units, including the South Nicholson Group, with a prevailing east to east-northeast structural grain. Mild deformation includes shallowly plunging fold axes and numerous faults along a north-west to south-east shortening direction. Major geological events affecting the South Nicholson Basin region include the formation of the Murphy Province's metamorphic and igneous rocks around 1850 million years ago (Ma). The Mount Isa Province experienced deposition in the Leichhardt Superbasin (1800 to 1750 Ma) and Calvert Superbasin (1725 to 1690 Ma). The Isa Superbasin, with extensional growth faulting in the Carrara Sub-basin (~1640 Ma), deposited sediments from approximately 1670 to 1590 Ma. Subsequently, the South Nicholson Group was deposited around 1500 to 1430 Ma, followed by the Georgina Basin's sedimentation. The basin shows potential for sandstone-type uranium, base metals, iron ore, and petroleum resources, while unconventional shale and tight gas resources remain largely unexplored. The Constance Sandstone holds promise as a petroleum reservoir, and the Mullera Formation and Crow Formation serve as potential seals.
-
This Ord Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Ord Basin, an intracratonic sedimentary basin, covers about 8000 square kilometres on the border of Western Australia and the Northern Territory. It was once part of the extensive Centralian Superbasin, which deposited sediments across central and northern Australia from the Proterozoic to early Palaeozoic era. The Ord Basin comprises three synclines with up to 2500 m of Cambrian and Devonian sedimentary rocks, separated by major faults and Proterozoic basement highs. The basin's northern boundary is defined by the Halls Rewards Fault and Proterozoic basement rocks, separating it from the Bonaparte Basin. The western edge overlies rocks of the Paleoproterozoic Halls Creek Orogen, while the eastern margin is separated from the Wiso Basin by volcanic Kalkarindji Province and Proterozoic Birrindudu and Victoria basins. The southern boundary is formed by the Negri Fault and Proterozoic basement highs. The depositional history of the Ord Basin can be divided into three phases. The early Cambrian witnessed extensive basaltic volcanism, forming the Antrim Plateau Volcanics. Subsequently, the Cambrian marine transgression deposited carbonates and clastic rocks of the Goose Hole Group, including the Elder and Negri Subgroups. The Late Devonian saw the deposition of continental sandstones and conglomerates of the Mahony Group. Throughout the basin's evolution, tectonic movements and erosional processes shaped its present configuration. The Alice Springs Orogeny (450 to 300 Ma) caused deformation and landscape changes, resulting in the deposition of the Mahony Group. Periodic reactivation of growth faults in the underlying Birrindudu Basin and subsequent erosion contributed to the basin's current structure. The Ord Basin's three synclines are the Hardman Syncline (southern and largest), the Rosewood Syncline (central), and the Argyle Syncline (northern). The Hardman Syncline holds the full succession of basin strata.
-
This McArthur Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The McArthur Basin, located in the north-east of the Northern Territory, is a Paleoproterozoic to Mesoproterozoic geological formation containing relatively undisturbed siliclastic and carbonate rocks, as well as minor volcanic and intrusive rocks. These sediments were primarily deposited in shallow marine environments, with some lacustrine and fluvial influences. The basin's thickness is estimated to be around 10,000 m to 12,000 m, potentially reaching 15,000 m in certain areas. It is known for hosting elements of at least two Proterozoic petroleum systems, making it a target for petroleum exploration, especially in the Beetaloo Sub-basin. Researchers have divided the McArthur Basin into five depositional packages based on similarities in age, lithofacies composition, stratigraphic position, and basin-fill geometry. These packages, listed from oldest to youngest, are the Wilton, Favenc, Glyde, Goyder, and Redback packages. The McArthur Basin is part of the broader Proterozoic basin system on the North Australian Craton, bounded by various inliers and extending under sedimentary cover in areas like the Arafura, Georgina, and Carpentaria basins. It is divided into northern and southern sections by the Urapunga Fault Zone, with significant structural features being the Walker Fault Zone in the north and the Batten Fault Zone in the south. The basin's southeastern extension connects with the Isa Superbasin in Queensland, forming the world's largest lead-zinc province. Overall, the McArthur Basin is an essential geological formation with potential petroleum resources, and its division into distinct packages helps in understanding its complex stratigraphy and geological history. Additionally, its connection with other basins contributes to a broader understanding of the region's geological evolution and resource potential.
-
This Western Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The geological evolution of Australia can be summarised as a west-to-east growth pattern, resulting from the assembly and disintegration of several supercontinents since the Archean era. The oldest rocks are found in Western Australia, specifically within the Western Australia fractured rock province, which consists of two crustal elements: the West Australian Element and the Pinjarra Element. The Yilgarn and Pilbara cratons in the West Australian Element host the oldest rocks in continental Australia, featuring high-grade gneiss belts, granite-greenstone belts, and significant gold and iron ore deposits. The Yilgarn Craton is older in the west and can be divided into several terranes, with the eastern regions hosting world-class gold deposits. The Pilbara Craton, on the other hand, consists of granitoid-greenstone terrain and is rich in banded iron formations, leading to the world's richest iron ore deposits in the Hamersley Basin. The Gascoyne Province forms the medium- to high-grade metamorphic core of the orogeny in the West Australian Element. The Albany-Fraser Orogen and Paterson Orogen joined the West Australian Element with the South Australian and North Australian Elements, respectively, and are characterised by metamorphosed rocks of various facies. The Pinjarra Orogen, situated to the west of the Yilgarn-Pilbara block, contains granulite and amphibolite facies orthogneisses. In the Phanerozoic era, sedimentary cover occurred in various large and smaller basins in Western Australia. The West Australian Element, along with the adjoining orogens, is treated as the West Australian fractured rock province, primarily reliant on weathered and fractured zones for groundwater storage due to low permeability. These cratons and orogens have been exposed since the Precambrian or Late Palaeozoic era, experiencing substantial weathering and river valley development. Modern palaeovalleys are mainly infilled with Cenozoic sediments, while arid conditions have reduced active watercourses, leading to an abundance of Aeolian sand cover. Many of these palaeovalleys are no longer active as rivers but can still be identified topographically. Overall, the geological history of Australia reveals a complex and diverse landscape, with Western Australia playing a significant role in hosting some of the continent's oldest rocks and valuable mineral deposits.
-
This Central Australian Cenozoic Basins dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Cenozoic basins are an important source of readily accessible groundwater within the arid deserts of central Australia. This province represents a collection of six notable Cenozoic basins within the region, including the Ti Tree, Waite, Hale, Mount Wedge, Lake Lewis and Alice Farm basins. Many local communities in this region (such as Papunya, Ti Tree and Ali Curung) rely upon groundwater stored within Cenozoic basin aquifers for their water security. The basins typically contain up to several hundred metres of saturated sediments that can include relatively thick intervals of hydraulically conductive sands, silts and minor gravels. It is noted that the potential groundwater storage volumes in the Cenozoic basins are much greater than the annual amount of runoff and recharge that occurs in central Australia, making them prospective targets for groundwater development. Groundwater quality and yields are variable, although relatively good quality groundwater can be obtained at suitable yields in many areas for community water supplies, stock and domestic use and irrigated horticulture operations, for example, in the Ti Tree Basin. However, not all of the Cenozoic basins have the potential to supply good quality groundwater resources for community and horticultural supplies. With the exception of several small sub-regions, most of the Waite Basin has very little potential to supply good quality groundwater for agricultural use. This is mainly due to limited aquifer development, low yielding bores and elevated groundwater salinity (commonly >2000 mg/L Total Dissolved Solids). However, bores have been successfully installed for smaller-scale pastoral stock and domestic supplies and small communities or outstations in the Waite Basin.
-
This South Australian Gulf and Yorke Cenozoic Basins dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Australian Gulf and Yorke Cenozoic basins consist of eleven separate basins with similar sediments. These relatively small to moderate-sized basins overlies older rocks from the Permian, Cambrian, or Precambrian periods and are often bounded by north-trending faults or basement highs. The largest basins, Torrens, Pirie, and Saint Vincent, share boundaries. The Torrens and Pirie basins are fault-bounded structural depressions linked to the Torrens Hinge Zone, while the Saint Vincent basin is a fault-bounded intra-cratonic graben. Smaller isolated basins include Carribie and Para Wurlie near the Yorke Peninsula, and Willochra and Walloway in the southern Flinders Ranges. The Barossa Basin, Hindmarsh Tiers, Myponga, and Meadows basins are in the Adelaide region. These basins resulted from tectonic movements during the Eocene Australian-Antarctic separation, with many forming in the late Oligocene. Sediment deposition occurred during the Oligocene to Holocene, with various environments influenced by marine transgressions and regressions. The well-studied Saint Vincent Basin contains diverse sediments deposited in fluvial, alluvial, deltaic, swamp, marine, littoral, beach, and colluvial settings, with over 30 major shoreline migrations. Eocene deposition formed fluvio-deltaic lignite and sand deposits, before transitioning to deeper marine settings. The Oligocene and Miocene saw limestone, calcarenite, and clay deposition, overlain by Pliocene marine sands and limestones. The uppermost sequences include interbedded Pliocene to Pleistocene limestone, sand, gravel, and clay, as well as Pleistocene clay with minor sand lenses, and Holocene to modern coastal deposits. The sediment thickness varies from less than 50 m to approximately 600 m, with the Saint Vincent Basin having the most substantial infill. Some basins were previously connected to the Saint Vincent Basin's marine depositional systems but later separated due to tectonic movements.
-
This Sydney Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Sydney Basin, part of the Sydney–Gunnedah–Bowen basin system, consists of rocks dating from the Late Carboniferous to Middle Triassic periods. The basin's formation began with extensional rifting during the Late Carboniferous and Early Permian, leading to the creation of north-oriented half-grabens along Australia's eastern coast. A period of thermal relaxation in the mid Permian caused subsidence in the Bowen–Gunnedah–Sydney basin system, followed by thrusting of the New England Orogen from the Late Permian through the Triassic, forming a foreland basin. Deposition in the basin occurred in shallow marine, alluvial, and deltaic environments, resulting in a stratigraphic succession with syn-depositional folds and faults, mostly trending north to north-east. The Lapstone Monocline and Kurrajong Fault separate the Blue Mountains in the west from the Cumberland Plain in the central part of the basin. The Sydney Basin contains widespread coal deposits classified into geographic coalfield areas, including the Southern, Central, Western, Newcastle, and Hunter coalfields. These coalfields are primarily hosted within late Permian strata consisting of interbedded sandstone, coal, siltstone, and claystone units. The coal-bearing formations are grouped based on sub-basins, namely the Illawarra, Tomago, Newcastle, and Wittingham coal measures, underlain by volcanic and marine sedimentary rocks. Deposition within the basin ceased during the Triassic, and post-depositional igneous intrusions (commonly of Jurassic age) formed sills and laccoliths in various parts of the basin. The maximum burial depths for the basin's strata occurred during the early Cretaceous, reaching around 2,000 to 3,000 metres. Subsequent tectonic activity associated with the Tasman Rift extension in the Late Cretaceous and compressional events associated with the convergence between Australia and Indonesia in the Neogene led to uplift and erosion across the basin. These processes have allowed modern depositional environments to create small overlying sedimentary basins within major river valleys and estuaries, along the coast and offshore, and in several topographic depressions such as the Penrith, Fairfield and Botany basins in the area of the Cumberland Plain.
-
This Eucla Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Eucla Basin, located along Australia's southern margin, covers an extensive area of approximately 1,150,000 square kilometres, housing the world's largest grouping of onshore Cenozoic marine sediments. It stretches over 2000 km from east to west and has four main subdivisions: Scaddan Embayment, Esperance Shelf, Nullarbor Shelf, and Yalata Sub-basin offshore. The basin extends about 350 km inland from the modern southern Australian coastline and terminates around 200 km offshore where it meets sediments of the Australian-Antarctic Basin. The sedimentary succession is largely consistent throughout the entire basin. In the west, it overlaps with the Yilgarn Craton and Albany-Fraser Orogen, while in the east, the Gawler Craton and Officer Basin separate it from the Musgrave Province. The basin contains mainly Cenozoic sediments, with thicker sequences in the east due to sediment movement and regional elevation differences. The onshore Eucla Basin hosts an unfaulted sheet of sediment deposited over a south-sloping shelf during several marine transgressions. The basal units rest on a prominent unconformity above the Bight Basin, indicating a break in deposition during the separation of Australia and Antarctica. The sedimentary sequence comprises various units such as the Hampton Sandstone, Pidinga Formation, and Werillup Formation, followed by the Wilson Bluff Limestone, Abrakurrie Limestone, Nullarbor Limestone, and Roe Calcarenite. The basin's geological history is marked by significant events such as marine transgressions during the Eocene, leading to the deposition of extensive limestone formations. The Miocene saw slight tilting of the basin, exposing the Nullarbor Plain to the atmosphere and limiting further sediment deposition. During the late Miocene to Pliocene, barrier and lagoonal transgressions contributed to the formation of the Roe Calcarenite. The Pliocene period witnessed intense karstification and the development of ferricrete and silcrete, resulting in the unique modern-day topography of the region.