From 1 - 10 / 27
  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>The Proterozoic Birrindudu Basin is an underexplored region that contains sparse geological data. Strata of similar age are highly prospective to the east, in the McArthur and South Nicholson basins and the Mount Isa region. To investigate this underexplored and data-poor region, the L214 Northwest Northern Territory Seismic Survey was acquired in August to September 2023 by GA and co-funded by the Northern Territory Government. Prior to this survey the region contained minimal seismic data. To complement the acquisition of the seismic survey, a sampling program of legacy stratigraphic and mineral exploration drill holes was also undertaken.</div><div><br></div><div>The new sampling program and seismic reflection data acquired over the Birrindudu Basin and its flanks, has identified many areas of exploration opportunity. This has almost tripled seismic coverage over the Birrindudu Basin, which has enabled new perspectives to be gained on its geology and relationship to surrounding regions. The new seismic has shown an increase in the extent of the Birrindudu Basin, revealing the presence of extensive concealed Birrindudu Basin sedimentary sequences and major, well preserved depocentres. In the central Birrindudu Basin and Tanami Region, shallow basement and deep-seated faults are encouraging for mineralisation, as these structures have the potential to focus mineralised fluids to the near surface. The clear presence of shallow Tanami Region rocks underlying the southern Birrindudu Basin sequences at the northern end of line 23GA-NT2 extends the mineral resource potential of the Tanami Region further north into the southern Birrindudu Basin. A new minimum age of 1822±7 Ma for the deposition of metasediments in drill hole LBD2 for rocks underlying the central Birrindudu Basin, extends the age-equivalent mineral-rich basement rocks of the Tanami Region north into the central Birrindudu Basin – extending the mineral resource potential into a new region.</div><div><br></div><div>The continuous stratigraphy imaged of the Birrindudu Basin by the new seismic is encouraging for energy prospectivity, as the system elements needed for an effective petroleum system, better defined by the new sampling program results, have been imaged to extend over a wider and deeper area. New organic petrological analysis and reflectance data indicate the sampled sections have reached thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the central and northwestern Birrindudu Basin. With the expanded breadth of these rocks demonstrated on the seismic, this greatly increases the spatial extent of hydrocarbon prospectivity in Birrindudu Basin.</div>

  • <div>The study utilised Geoscience Australia’s vast data collection of mineral occurrences to identify the range of historical discoveries within the Officer-Musgrave, Darling-Curnamona - Delameian and Barkly - Isa - Georgetown Deep Dive areas. A literature review shed light on exploration discovery methods, commodity grades, exploration histories and deposit types. Many critical mineral occurrences were overlooked or ignored in the past, as the commodity discovered was not of interest or value at the time, or grades were regarded as sub-economic. However, with modern methods of mining, ore treatment techniques and increased demand, reassessment could now provide new opportunities.</div>

  • The GSQ Eulo 3 borehole was drilled approximately 50 km SW of Eulo, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks.

  • The Tongo 1 borehole was drilled approximately 83 km NE of White Cliffs, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • The Janina 1 borehole was drilled approximately 110 km W of Bourke, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • The GSQ Cunnamulla 1 borehole was drilled approximately 110 km SE of Cunnamulla, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks, and to test pre-drilling geophysical cover thickness estimates.

  • Exploring for the Future (EFTF) is a multiyear (2016–2024) initiative of the Australian Government, conducted by Geoscience Australia. This program aims to improve Australia’s desirability for industry investment in resource exploration of frontier regions across Australia. This paper will focus on the science impacts from the EFTF program in northern Australia derived from the acquisition and interpretation of seismic surveys, the drilling of the NDI Carrara 1 and also complementary scientific analysis and interpretation to determine the resource potential of the region. This work was undertaken in collaboration with the Northern Territory Geological Survey, the Queensland Geological Survey, AuScope and the MinEx CRC. These new data link the highly prospective resource rich areas of the McArthur Basin and Mt Isa Province via a continuous seismic traverse across central northern Australia. The Exploring for the Future program aims to further de-risk exploration within greenfield regions and position northern Australia for future exploration investment. [Carr] The Sherbrook Supersequence is the youngest of four Cretaceous supersequences in the Otway Basin and was deposited during a phase of crustal extension. This presentation shows how a basin-scale gross depositional environment (GDE) map for the Sherbrook SS was constructed, the significance of the map for the Austral 3 petroleum system, and why GDE mapping is important for pre-competitive basin studies at Geoscience Australia. [Abbott]

  • <div>The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset. The present report presents additional mineralogical data acquired as part of the Heavy Mineral Map of Australia (HMMA) project on the NGSA samples, covering ~81% of Australia. The HMMA project, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (EFTF) program.</div><div>All of the 1315 NGSA bottom catchment outlet sediment samples, taken on average from 60 to 80 cm depth in floodplain landforms, were used in the HMMA project. The samples were dried and sieved to a 75-425 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity > 2.9 g/cm3) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified 163 unique phases (including ‘Unclassified”) in the NGSA sample set. The dataset, consisting of over 145 million individual mineral grains, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using a free online, bespoke mineral network analysis (MNA) tool built on a cloud-based platform. Preliminary analysis suggests that zinc minerals and native elements&nbsp;(e.g., native gold and platinum) may be useful in mineral exploration applications. Detailed interpretations of the HMMA dataset will be provided elsewhere. Accompanying this report are data files of TIMA results, a minerals property file, and an atlas of HM distribution maps. </div><div>It is hoped the comprehensive dataset generated by the HMMA project will be of use to mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.</div>

  • <div>Heavy minerals (HMs) are those with a specific gravity greater than 2.9 g/cc (e.g., anatase, zircon). They have been used successfully in mineral exploration programs outside Australia for decades [1 and refs therein]. Individual HMs and combinations, or co-occurrence, of HMs can be characteristic of lithology, degree of metamorphism, alteration, weathering or even mineralisation. These are termed indicator minerals, and have been used in exploration for gold, diamonds, mineral sands, nickel-copper, platinum group elements, volcanogenic massive sulfides, non-sulfide zinc, porphyry copper-molybdenum, uranium, tin-tungsten, and rare earth elements mineralization. Although there are proprietary HM sample assets held by industry in Australia, no extensive public-domain dataset of the natural distribution of HMs across the continent currently exists.</div><div> We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia [1]. These samples were collected as part of the National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa) and are archived in Geoscience Australia’s rock store. The composition of the sediments can be assumed to reflect the dominant rock and soil types within each catchment (and potentially those upstream), with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. </div><div> Underpinning this vision is a pilot project, focusing on a subset of NGSA to demonstrate the feasibility of the larger, national-scale project. Ten NGSA sediment samples were selected and both bulk and HM fractions were analysed for quantitative mineralogy using a Tescan® Integrated Mineral Analyzer (TIMA) at the John de Laeter Centre, Curtin University (Figure 1). Given the large and complex nature of the resultant HM dataset, we built a bespoke, cloud-based mineral network analysis (MNA) tool to visualise, explore and discover relationships between HMs, as well as between them and geological setting or mineral deposits. The pilot project affirmed our expectations that a rich and diverse mineralogical ecosystem will be revealed by expanding HM mapping to the continental scale. </div><div> A first partial data release in 2022 was the first milestone of the Heavy Mineral Map of Australia (HMMA) project. The area concerned is the Darling-Curnamona-Delamerian region of southeastern Australia, where the richly endowed Broken Hill mineral province lies. Here, we identified over 140 heavy minerals from 29 million individual mineral observations in 223 sediment samples. Using the MNA tool, one can quickly identify interesting base metal mineral associations and their spatial distributions (Figure 2).</div><div> We envisage that the Heavy Mineral Map of Australia and the MNA tool will contribute significantly to mineral prospectivity analysis and modelling in Australia, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, decarbonised paradigm.</div><div><br></div>Figure 1. Distribution map of ten selected heavy minerals in the heavy mineral fractions of the ten NGSA pilot samples (pie charts), overlain on Australia’s geological regions (variable colors) [2]). Map projection: Albers equal area.</div><div><br></div><div>Figure 2. Graphical user interface for the Geoscience Australia MNA cloud-based visualization tool for the DCD project (https://geoscienceaustralia.shinyapps.io/HMMA-MNA/) showing the network for Zn minerals with the gahnite subnetwork highlighted (left) and the map of gahnite distribution (right).</div><div> <strong>References</strong></div><div>[1] Caritat et al., 2022, Minerals, 12(8), 961. https://doi.org/10.3390/min12080961 </div><div>[2] Blake &amp; Kilgour, 1998, Geosci Aust. https://pid.geoscience.gov.au/dataset/ga/32366 </div><div><br></div>This Abstract was submitted/presented to the 2022 Mineral Prospectivity and Exploration Targeting (MinProXT 2022) webinar, Freiburg, Germany, 01 - 03 November (www.minproxt.com)

  • The National Geochemical Survey of Australia (NGSA) provides an internally consistent, state-of-the-art, continental-scale geochemical dataset that can be used to assess areas of Australia more elevated in commodity metals and/or pathfinder elements than others. But do regions elevated in such elements correspond to known mineralized provinces, and what is the best method for detecting and thus potentially predicting those? Here, using base metal associations as an example, I compare a trivariate rank-based index and a multivariate-based Principal Component Analysis method. The analysis suggests that the simpler rank-based index better discriminates catchments endowed with known base metal mineralization from barren ones and could be used as a first-pass prospectivity tool. <b>Citation:</b> Patrice de Caritat, Continental-scale geochemical surveys and mineral prospectivity: Comparison of a trivariate and a multivariate approach, <i>Journal of Geochemical Exploration</i>, Volume 188, 2018, Pages 87-94, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2018.01.014