Isotope Geochemistry
Type of resources
Keywords
Publication year
Scale
Topics
-
The purpose of this study was to constrain the processes of Paleoproterozoic crustmantle evolution by investigating the Lu-Hf, Sm-Nd and oxygen isotope systematics of igneous rocks of the Lamboo Province of the Halls Creek and King Leopold Orogens, in the Kimberley region of Western Australia. The specific objectives were to: 1. Ascertain the nature of the source rocks of the granites, and to test whether granite formation involved the reworking of ancient meta-igneous protoliths in an intra-plate environment or complex crust-mantle interaction processes typical of modern plate tectonic settings; 2. Use data from granite-hosted zircons to quantify the proportion of new crust formed during discrete magmatic events, and to link this with the longer-term record of crustal evolution preserved by detrital zircons, and 3. Constrain the tectonic setting of the Lamboo Province, and thus the geodynamic controls on global crustal growth in this key time period.
-
Geoscience Australia has compiled U-Pb datasets from disparate sources into a single, standardised and publicly-available U–Pb geochronology compilation for all Australia. The national maps presented in this poster expand upon the data coverage previously compiled by Anderson et al. (2017) and Jones et al. (2018), which covered northern and western Australia only. This extension of a national coverage has been achieved through the development of Geoscience Australia’s Interpreted Ages database. In this database, there are now >4000 U–Pb sample points compiled from across Australia, with significant datasets to come from the southern Australia regions. These will be available to the public in the coming months through the Exploring for the Future Data Discovery Portal (eftf.ga.gov.au).
-
Australia has been, and continues to be, a leader in isotope geochronology and geochemistry. While new isotopic data is being produced with ever increasing pace and diversity, there is also a rich legacy of existing high-quality age and isotopic data, most of which have been dispersed across a multitude of journal papers, reports and theses. Where compilations of isotopic data exist, they tend to have been undertaken at variable geographic scale, with variable purpose, format, styles, levels of detail and completeness. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Age and isotopic patterns at continental scale can provide intriguing insights into the temporal and chemical evolution of the continent (Fraser et al, 2020). As national custodian of geoscience data, Geoscience Australia has addressed this challenge by developing an Isotopic Atlas of Australia, which currently (as of November 2020) consists of national-scale coverages of four widely-used age and isotopic data-types: 4008 U-Pb mineral ages from magmatic, metamorphic and sedimentary rocks 2651 Sm-Nd whole-rock analyses, primarily of granites and felsic volcanics 5696 Lu-Hf (136 samples) and 553 O-isotope (24 samples) analyses of zircon 1522 Pb-Pb analyses of ores and ore-related minerals These isotopic coverages are now freely available as web-services for use and download from the GA Portal. While there is more legacy data to be added, and a never-ending stream of new data constantly emerging, the provision of these national coverages with consistent classification and attribution provides a range of benefits: vastly reduces duplication of effort in compiling bespoke datasets for specific regions or use-cases data density is sufficient to reveal meaningful temporal and spatial patterns a guide to the existence and source of data in areas of interest, and of major data gaps to be addressed in future work facilitates production of thematic maps from subsets of data. For example, a magmatic age map, or K-Ar mica cooling age map sample metadata such as lithology and stratigraphic unit is associated with each isotopic result, allowing for further filtering, subsetting and interpretation. The Isotopic Atlas of Australia will continue to develop via the addition of both new and legacy data to existing coverages, and by the addition of new data coverages from a wider range of isotopic systems and a wider range of geological sample media (e.g. soil, regolith and groundwater).
-
This Record contains new zircon and monazite U-Pb geochronological data obtained via Sensitive High-Resolution Ion Micro Probe (SHRIMP) from nine samples of volcanic, volcaniclastic and plutonic igneous rocks of the central Lachlan Orogen and the New England Orogen, New South Wales. These data were obtained during the reporting period July 2014-June 2015, under the auspices of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA), which is part of the National Collaboration Framework (NCF).
-
A regional hydrocarbon prospectivity study was undertaken in the onshore Canning Basin in Western Australia as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to driving investment in resource exploration. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well, and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Barnicarndy 1, was drilled in 2019 in a partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the Barnicarndy Graben, 67 km west of Telfer, in the southwest Canning Basin. Drilling recovered about 2100 m of continuous core from 580 mRT to the driller’s total depth (TD) of 2680.53 mRT. An extensive analytical program was carried out to characterise the lithology, age and depositional environment of these sediments. This data release presents organic geochemical analyses undertaken on rock extracts obtained from cores selected from the Barnicarndy 1 well. The molecular and stable isotope data carbon and hydrogen will be used to understand the type of organic matter being preserved, the depositional facies and thermal maturity of the Lower Ordovician sedimentary rocks penetrated in this well. This information provides complementary information to other datasets including organic petrological and palynological studies.
-
Plutonium (Pu) interactions in the environment are highly complex. Site-specific variables play an integral role in determining the chemical and physical form of Pu, and its migration, bioavailability, and immobility. This paper aims to identify the key variables that can be used to highlight regions of radioecological sensitivity and guide remediation strategies in Australia. Plutonium is present in the Australian environment as a result of global fallout and the British nuclear testing program of 1952 – 1958 in central and west Australia (Maralinga and Monte Bello islands). We report the first systematic measurements of 239+240Pu and 238Pu activity concentrations in distal (≥1,000 km from test sites) catchment outlet sediments from Queensland, Australia. The average 239+240Pu activity concentration was 0.29 mBq.g -1 (n = 73 samples) with a maximum of 4.88 mBq.g -1. 238Pu/239+240Pu isotope ratios identified a large range (0.02 – 0.29 (RSD: 74%)) which is congruent with the heterogeneous nuclear material used for the British nuclear testing programme at Maralinga and Montebello Islands. The use of a modified PCA relying on non-linear distance correlation (dCorr) provided broader insight into the impact of environmental variables on the transport and migration of Pu in this soil system. Primary key environmental indicators of Pu presence were determined to be actinide/lanthanide/heavier transition metals, elevation, electrical conductivity (EC), CaO, SiO2, SO3, landform, geomorphology, land use, and climate explaining 81.7% of the variance of the system. Overall this highlighted that trace level Pu accumulations are associated with the coarse, refractive components of Australian soils, and are more likely regulated by the climate of the region and overall soil type. <b>Citation:</b> Megan Cook, Patrice de Caritat, Ross Kleinschmidt, Joёl Brugger, Vanessa NL. Wong, Future migration: Key environmental indicators of Pu accumulation in terrestrial sediments of Queensland, Australia,<i> Journal of Environmental Radioactivity</i>, Volumes 223–224, 2020, 106398,ISSN 0265-931X, https://doi.org/10.1016/j.jenvrad.2020.106398
-
The unexpected discovery of oil in Triassic sedimentary rocks of the Phoenix South 1 well on Australia’s North West Shelf (NWS) has catalysed exploration interest in pre-Jurassic plays in the region. Subsequent neighbouring wells Roc 1–2, Phoenix South 2–3 and Dorado 1–3 drilled between 2015 and 2019 penetrated gas and/or oil columns, with the Dorado field containing one of the largest oil resources found in Australia in three decades. This study aims to understand the source of the oils and gases of the greater Phoenix area, Bedout Sub-basin using a multiparameter geochemical approach. Isotopic analyses combined with biomarker data confirm that these fluids represent a new Triassic petroleum system on the NWS unrelated to the Lower Triassic Hovea Member petroleum system of the Perth Basin. The Bedout Sub-basin fluids were generated from source rocks deposited in paralic environments with mixed type II/III kerogen, with lagoonal organofacies exhibiting excellent liquids potential. The Roc 1–2 gases and the Phoenix South 1 oil are likely sourced proximally by Lower–Middle Triassic TR10–TR15 sequences. Loss of gas within the Phoenix South 1 fluid due to potential trap breach has resulted in the formation of in-place oil. These discoveries are testament to new hydrocarbon plays within the Lower–Middle Triassic succession on the NWS.
-
This report presents the results of an elemental and carbon and oxygen isotope chemostratigraphy study on three historic wells; Kidson-1, Willara-1 and Samphire Marsh-1, from the southern Canning Basin, Western Australia. The objective of this study was to correlate the Early to Middle Ordovician sections of the three wells to each other and to wells with existing elemental and carbonate carbon isotope chemostratigraphy data from the Broome Platform, Kidson and Willara sub-basins, and the recently drilled and fully cored stratigraphic Waukarlycarly 1 well from the Waukarlycarly Embayment.
-
The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) <a href="https://portal.ga.gov.au/persona/geochronology">Geochronology and Isotopes Data Portal</a>. This poster provides example maps produced from the compiled data of multiple geochronology and isotopic tracer datasets, now available in the <a href="https://portal.ga.gov.au/persona/eftf">EFTF Portal</a>. Available data include Sm–Nd model ages of magmatic rocks; Lu–Hf isotopes from zircon and associated O-isotope data; Pb–Pb isotopes from ore-related minerals such as galena and pyrite; Rb–Sr isotopes from soils; U–Pb ages of magmatic, metamorphic and sedimentary rocks; and K–Ar, Ar–Ar, Re–Os, Rb–Sr and fission-track ages from minerals and whole rocks. Compiled geochronology, which commenced with coverage of northern Australia, is now much more comprehensive across Victoria and Tasmania, with New South Wales and South Australia updates well underway. This Isotopic Atlas of Australia provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. These datasets and maps unlock the collective value of several decades of geochronological and isotopic studies conducted across Australia, and provide an important complement to other geological maps and geophysical images—in particular, by adding a time dimension to 2D and 3D maps and models. To view the associated poster see <a href="https://pid.geoscience.gov.au/dataset/ga/147377">eCat 147377</a>. This Abstract & Poster were presented to the 2022 Specialist Group in Geochemistry, Mineralogy and Petrology (SGGMP) Conference 7-11 November (https://gsasggmp.wixsite.com/home/biennial-conference-2021)
-
The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Offshore Energy Systems Section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. As part of this program, molecular and isotopic analyses were undertaken by Geoscience Australia on gas samples from the well Dorado 1 and the raw data from these analyses are released in this report.