Hazard Response
Type of resources
Keywords
Publication year
Topics
-
The present study reports on recent developments of the Indonesia Tsunami Early Warning System (InaTEWS), especially with respect to the tsunami modeling components used in that system. It is a dual system: firstly, InaTEWS operates a high-resolution scenario database pre-computed with the finite element model TsunAWI; running in parallel, the system also contains a supra real-time modeling component based on the GPU-parallelized linear long-wave model easyWave capable of dealing with events outside the database coverage. The evolution of the tsunami scenario database over time is covered in the first sections. Starting from the mere coverage of the Sunda Arc region, the current state contains scenarios in 15 fault zones. The study is augmented by an investigation of warning products used for early warning like the estimated wave height (EWH) and the estimated time of arrival (ETA). These quantities are determined by easyWave and TsunAWI with model specific approaches. Since the numerical setup of the models is very different, the extent of variations in warning products is investigated for a number of scenarios, where both pure database scenarios and applications to real events are considered.
-
The Government of Indonesia has committed to deploying a network of 500 strong-motion sensors throughout the nation. The data from these sensors have the potential to provide critical near-real-time information on the level of ground shaking and potential impact from Indonesian earthquakes near communities. We describe the implementation of real-time ‘ShakeMaps’ within Indonesia's Agency of Meteorology, Climatology and Geophysics (BMKG). These ShakeMaps are intended to underpin real-time earthquake situational awareness tools. The use of the new strong-motion network is demonstrated for two recent earthquakes in northern Sumatra: the 2 July 2013 Mw 6.1 Bener Meriah, Sumatra and the 10 October 2013 Mw 5.4 Aceh Besar earthquakes. The former earthquake resulted in 35 fatalities, with a further 2400 reported injuries. The recently integrated ShakeMap system automatically generated shaking estimates calibrated by BMKG's strong-motion network within 7 min of the Bener Meriah earthquake's origin, which assisted the emergency response efforts. Recorded ground motions are generally consistent with theoretical models. However, more analysis is required to fully characterize the attenuation of strong ground motion in Indonesia.
-
Through Australian Department of Foreign Affairs and Trade, Geoscience Australia has been working closely with the Government of Papua New Guinea technical agencies (Rabaul Volcano Observatory, Port Moresby Geophysical Observatory, and Engineering Geology Branch) since September 2010 to enhance their capabilities to monitor and assess natural hazards. The objective of this program is to support the Government of Papua New Guinea in developing fundamental information and practices for the effective response and management of natural hazard events in PNG. Earthquakes as natural hazards are one of the key focus points of this project, as they continue to cause loss of life and widespread damage to buildings and infrastructure in Papua New Guinea. The country’s vulnerability to earthquakes is evident from the significant socio-economic consequences of recent major events in Papua New Guinea, e.g., a magnitude 7.5 earthquake that occurred in the Hela Province of Papua New Guinea in 2018. Earthquake risk is likely to increase significantly in the years to come due to the growth in population and urbanization in Papua New Guinea. However, earthquake risk, unlike hazard, can be managed and minimized. One obvious example would be minimizing earthquake risk by constructing earthquake-resistant structures following building standards. The high level of earthquake hazard of Papua New Guinea has been long recognised and the suite of building standards released in 1982 contained provisions to impart adequate resilience to buildings based on the best understanding of seismic hazard available at that time. However, the building standards and incorporated seismic hazard assessment for Papua New Guinea has not been updated since the 1980s. The integration of modern national seismic hazard models into national building codes and practices provides the most effective way that we can reduce human casualties and economic losses from future earthquakes. This report aims at partially fulfilling this task by performing a probabilistic seismic hazard assessment to underpin a revision of the earthquake loading component of the building standards of Papua New Guinea. The updated assessment offers many important advances over its predecessor. It is based on a modern probabilistic hazard framework and considers an earthquake catalogue augmented with an additional four decades-worth of data. The revised assessment considers advances in ground-motion modelling through the use of multiple ground-motion models. Also, for the first time, the individual fault sources representing active major and microplate boundaries are implemented in the input hazard model. Furthermore, the intraslab sources are represented realistically by using the continuous slab volume to constrain the finite ruptures of such events. This would better constrain the expected levels of ground motion at any given site in Papua New Guinea. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain–Bougainville region, and a relatively low level of hazard in the southern part of the New Guinea Highlands Block. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current seismic zoning map, leading to a significant under-estimation of hazard in PNG’s second-largest city, Lae. It can also be shown that in many other regions and community localities in PNG the hazard is higher than that regulated for the design of buildings having a range of natural periods. Thus, the need for an updated hazard map for building design has been confirmed from the results of this study, and a revised map is developed for consideration in a revised building standard of Papua New Guinea.
-
Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG using the OpenQuake software developed by the Global Earthquake Model Foundation (Pagani et al. 2014). Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati–Benioff zone seismicity in a more realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain – Bougainville region, and a relatively low level of hazard in the southwestern part of mainland PNG. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution of seismic hazard used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. <b>Citation:</b> Ghasemi, H., Cummins, P., Weatherill, G. <i>et al.</i> Seismotectonic model and probabilistic seismic hazard assessment for Papua New Guinea. <i>Bull Earthquake Eng, </i><b>18</b>, 6571–6605 (2020). https://doi.org/10.1007/s10518-020-00966-1
-
A component of the PNG-Australia Volcanological Services Support (VSS) Project funded by AusAID
-
Indonesia is located in one of the most seismically active regions in the world and often experiences damaging earthquakes. In the past the housing sector has sustained more damage and losses than other sectors due to earthquakes. This is often attributed to the fact that the most common houses in Indonesia are non-engineered, built with poor quality workmanship, poor quality materials and without resilient seismic design features. However little effort has been made to quantify how fragile these houses are, or how the fragility of these houses may vary according to location or wealth. It is not possible to derive empirical fragility functions for Indonesia due to insufficient damage data. The aim of this study is to determine whether existing earthquake fragility functions can be used for common houses in Indonesia. Scenario damage analyses were undertaken several times using different sets of fragility functions for the 2006 Yogyakarta and 2009 Padang events. The simulated damage results were then compared to the damage observed post event to determine whether an accurate damage prediction could be achieved. It was found that the common houses in Yogyakarta and Central Java vary according to age, location and wealth and can be reasonably well represented by existing fragility functions. However, the houses in Padang and surrounding West Sumatra did not vary in a predictable manner and are more fragile than anticipated. Therefore, the fragility of the most common houses in Indonesia is not uniform across the country. This has important implications for seismic damage and risk assessment undertaken in Indonesia. <b>Citation:</b> Weber, R., Cummins, P. & Edwards, M. Fragility of Indonesian houses: scenario damage analysis of the 2006 Yogyakarta and 2009 Padang earthquakes. <i>Bull Earthquake Eng</i> (2024). https://doi.org/10.1007/s10518-024-01930-z
-
<div>On January 15, 2022, an ongoing eruption at the Hunga volcano generated a large explosion which resulted in a globally observed tsunami and atmospheric pressure wave. This paper presents time series observations of the event from Australia including 503 mean sea level pressure (MSLP) sensors and 111 tide gauges. Data is provided in its original format, which varies between data providers, and a post-processed format with consistent file structure and time-zone. High-pass filtered variants of the data are also provided to facilitate study of the pressure wave and tsunami. For a minority of tide gauges the raw sea level data cannot be provided, due to licence restrictions, but high-pass filtered data is always provided. The data provides an important historical record of the Hunga volcano pressure wave and tsunami in Australia. It will be useful for research in atmospheric and ocean waves associated with large volcanic eruptions. <b>Citation:</b> Davies, G., Wilson, K., Hague, B. et al. Australian atmospheric pressure and sea level data during the 2022 Hunga-Tonga Hunga-Ha’apai volcano tsunami. <i>Sci Data</i> <b>11</b>, 114 (2024). https://doi.org/10.1038/s41597-024-02949-2
-
On the 30th September 2009 a magnitude 7.6 earthquake struck West Sumatra in the Padang and Pariaman regions. It caused widespread damage to buildings and resulted and an estimated 1,117 fatalities. Thankfully the event was not accompanied by a tsunami that could have had additional devastating impacts and a greatly increased mortality. Under its mandate the AIFDR responded to the earthquake event with the objective of deriving an understanding of the factors that had contributed to outcome. It supported a team of Indonesian and international engineers and scientists who collected and analysed damage information that could subsequently be used for future disaster risk reduction in West Sumatra and Indonesia more broadly. The activity was jointly led by the Centre for Disaster Mitigation at the Institut Teknologi Bandung (ITB) and Geoscience Australia. This report provides a background to the region, describes the nature of the earthquake and its impacts, details the survey activity and outlines the significant outcomes that has come from it. Importantly, it makes several recommendations to assist in the regional reconstruction after the event and to guide future development in the Padang region and Indonesia more generally.
-
Tsunami hazard modelling for Tonga shows the potential impacts of tsunami generated by a very large earthquake on the nearby Tongan Trench.
-
Legacy product - no abstract available