From 1 - 10 / 10
  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • The Australian Geoscience Data Cube has won the 2016 Content Platform of the Year category at the Geospatial World Leadership Awards. The awards recognise significant contributions made by champions of change within the global geospatial industry and were presented during the 2017 Geospatial World Forum held in Hyderabad, India. The Data Cube was developed by Geoscience Australia in partnership with the CSIRO and the National Computational Infrastructure at the Australian National University, and is a world-leading data analysis system for satellite and other Earth observation data. Visit www.datacube.org.au to find out more including the technical specifications, and learn how you can develop your own Data Cube and become part of the collective.

  • Following the successful outcomes of the Tennant Creek-Mt Isa (TISA) mineral potential assessment (Murr et al., 2019; Skirrow et al., 2019), the methodology has been expanded to encompass the entire North Australian Craton (NAC). Like its predecessor, this assessment uses a knowledge-based, data-rich mineral systems approach to predict the potential for iron oxide-copper-gold (IOCG) mineralisation. With their high metal yield and large alteration footprint, IOCG mineral systems remain an attractive target in directing exploration efforts towards undercover regions. This mineral potential assessment uses a 2D GIS-based workflow to map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components, theoretical criteria representing important ore-forming processes were identified and translated into mappable proxies using a wide range of input datasets. Each of these criterion are weighted and combined using an established workflow to produce a models of IOCG potential. Metadata and selection rational are documented in the accompanying NAC IOCG Assessment Criteria Table. Two scenarios were modelled for this assessment. The first is a comprehensive assessment, targeting pre-Neoproterozoic mineral systems (>1500 Ma), using a combination of interpreted, geological and geophysical datasets. As geological interpretations are subjective to the geological knowledge of the interpreter, well-documented areas, such as shallow pre-Neoproterozoic basement, have a greater density of data. This increase in data density can create an inherent bias in the modelled result towards previously explored shallow terrains. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment, and observations are reflective of only the modern geological environment. Both assessments highlight existing mineral fields in WA, NT and QLD, and suggest that these regions extend under cover. Furthermore, regions not previously known for IOCG mineralisation display a high modelled potential, offering exploration prospects in previously unknown or discounted areas.

  • <p>Iron oxide-copper-gold (IOCG) mineral systems are a desirable undercover exploration target due to their large alteration footprint and potentially high metal content. To assist in understanding the potential for IOCG mineral systems beneath cover in the Tennant Creek to Mount Isa region as part of Exploring for the Future, a predictive mineral potential assessment has been undertaken using a knowledge-based, mineral systems approach.<p>This mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential, all of which is well documented in the accompanying IOCG Assessment Criteria Table.<p>Two assessments have been undertaken. The first is a comprehensive assessment containing all available geospatial information and is highly reliant on the level of geological knowledge. As such, it preferentially highlights mineral potential in well-understood areas, such as outcropping regions and performs less well in covered areas, where there is a greater likelihood of data gaps. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment.<p>Both assessment highlight new areas of interest in underexplored regions, of particular interest a SW-NE corridor to the East of Tennant Creek of moderate/high potential in the Barkly region. This corridor extends to an area of moderate potential in the Murphy Inlier region near the Gulf of Carpentaria on the NT/QLD border.

  • The Science Strategy 2028 Implementation Plan outlines the activities and actions across Geoscience Australia, led by the Chief Scientist, to operationalise the 'key implementations' of Science Strategy 2028. The discrete activities articulated in this Implementation Plan stem from mapping the six Science Principles against Geoscience Australia's Strategy 2028 Core Commitments. The Implementation Plan outlines the context and strategic rationale for a range of Geoscience Australia's activities led through the Office of the Chief Scientist, including the Science Evaluations, scientific capability and capacity mapping, and geoscientific engagement with First Nations communities and perspectives.

  • Geoscience Australia's value to the nation, outlined in its Strategy 2028 decadal plan, is through its science. However, the way that the organisation applies its science and achieves impact cannot be taken for granted. Science Strategy 2028, launched in late-2021, presents a guiding strategic framework for delivering the science that underpins our core business. This Science Strategy outlines the organisation's longstanding Science Principles as a business imperative and as key tenets for maintaining Geoscience Australia's standing as the nation’s trusted advisor on Australia’s geoscience and geography. Through the Science Strategy, Geoscience Australia will continue to integrate and achieve the six Science Principles through its business: to deliver relevant, collaborative, quality, transparent and communicated science, with a view to sustain our scientific capability.

  • <div>Sander Geophysics Limited (SGL) conducted a fixed-wing high resolution airborne gravimetric survey over two survey blocks, Pilbara Northwest and Pilbara Southeast in Northwestern Australia for Geoscience Australia and its partner the Geological Survey of Western Australia (GSWA). </div><div>The traverse lines were oriented east-west in the Pilbara Northwest block and north-south in the Pilbara Southeast block and spaced at 2500 m. A limited number of control lines flown exclusively in the Pilbara Northwest block were oriented north-south and spaced at 50,000 m. A drape surface was created taking into account the terrain and the performance of the aircraft at the expected altitudes and estimated temperatures. The survey was flown with a target clearance of survey 160m above ground level. </div><div>&nbsp;</div><div><strong>Survey details </strong></div><div>Survey Name: Pilbara WA airborne gravity surveys 2019</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1314</div><div> Acquisition Start Date: April 23, 2019</div><div> Acquisition End Date: June 16, 2019</div><div> Flight line spacing: 2500m</div><div> Flight line direction: 270deg / EW (Pilbara NW); 180deg / NS (Pilbara SE)</div><div> Control line spacing: 50,000m – Pilbara NW only</div><div> Control line direction: 180 deg / NS – Pilbara NW only</div><div>Total line kilometers: 69,943</div><div> Nominal terrain clearance (above ground level): 160m</div><div> Aircraft type: Cessna Grand Caravan 208B</div><div>Data Acquisition: Sander Geophysics Limited </div><div> Project Management: Geoscience Australia</div><div> Quality Control: Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div>&nbsp;</div><div>This data package release contains the final survey deliverables received from the contractor SGL, and peer reviewed by Dr Mark Dransfield.</div><div>&nbsp;</div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII XYZ and ASEG-GDF2 format with accompanying description and definition files.</div><div><br></div><div><strong><em>2.Grids</em></strong> in General eXchange Format (.gxf) and ERMapper format (.ers)</div><div> Datum:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GDA94</div><div>Projection:&nbsp;&nbsp;MGA 50</div><div>Grid cell size:&nbsp;500m</div><div>A full wavelength spatial filter of 5000m was applied to all the gravity grids. See details in the readme files.</div><div><br></div><div> <strong>3. Readme files</strong></div><div>- PNW-readme-grav.txt </div><div>- PSE-readme-grav.txt</div><div><br></div><div><strong>4. Reports</strong> </div><div> - Final survey logistic report (Pilbara SE and NW) from the contractor: P1314_Pilbara_2019_TR-878-000.pdf </div><div>- Pilbara NW survey QC report by M Dransfield: Pilbara NW AG QC report.pdf </div><div>- Pilbara SE survey QC report by M Dransfield: Pilbara SE AG QC report.pdf</div><div><br></div><div> The data from this Pilbara survey are also available for download from https://geoview.dmp.wa.gov.au/GeoView under reference number 71470.</div>

  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • <div>Sander Geophysics Limited (SGL) conducted a fixed-wing high resolution gravimetric survey in the East Kimberley area of the state of Western Australia for Geoscience Australia. A total of 37,806 line kilometres of airborne gravity data were acquired using </div><div>SGL’s airborne gravity system, Airborne Inertially Referenced Gravimeter (AIRGrav). The survey was funded by the Department of Mines, Industry Regulation and Safety (DMIRS) Western Australia, and managed by Geoscience Australia.</div><div><br></div><div>The data were peer reviewed by airborne gravity expert Dr Mark Dransfield contracted by Geoscience Australia.</div><div><br></div><div>The data from this survey were released by the Geological Survey of Western Australia and can be downloaded from MAGIX under reference 71156.</div><div><br></div><div><strong>Survey details</strong></div><div>Survey Name: East Kimberley Airborne Gravity Survey 2016</div><div>State/Territory: Western Australia</div><div>Datasets Acquired: Airborne gravity, </div><div>Geoscience Australia Project Number: P1289</div><div>Acquisition Start Date: 08 October 2016</div><div>Acquisition End Date: 03 December 2016</div><div>Flight line spacing: 2,500m</div><div>Flight line direction: East-West</div><div>Tie line spacing: 25,000m</div><div>Tie line direction: North-South</div><div>Total distance flown: 37,806 line km</div><div>Nominal terrain clearance (above ground level): 160m</div><div>Aircraft type: Fixed wing Cessna Grand Caravan 208B</div><div>Data Acquisition: Sander Geophysics Limited</div><div>Project Management: Geoscience Australia</div><div>Quality Control: Geoscience Australia</div><div>Dataset Ownership: Western Australia Department of Mines, Industry Regulation and Safety, and Geoscience Australia</div><div><br></div><div><strong>Files included in this download</strong></div><div><br></div><div><strong>1. Point-located data / line data</strong> </div><div>Data in ASEG GDF2 format, with accompanying description and definition files </div><div>P1289_grav.dat – survey data</div><div>P1289_grav.dfn – survey data definition</div><div>P1289_grav.met – survey metadata</div><div><br></div><div><strong>2. Grids - 7 grid files</strong></div><div>Datum:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GDA94</div><div>Projection:&nbsp;&nbsp;MGA 52 </div><div>Grid cell size:&nbsp;500m</div><div>Formats:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;General eXchange Format (.gxf) and ERMapper (.ers) format.</div><div><br></div><div>Grid name Units Description</div><div>- GRVFAL2500M&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; µms-2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Free air gravity, 2500m half-wavelength spatial filter</div><div>- FVDFAL2500M&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;Eotvos&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First vertical derivative of free air gravity, 2500m half-wavelength spatial filter</div><div>- GRVBGL2500M_267&nbsp;&nbsp;µms-2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Full Bouguer gravity, 2500m half-wavelength spatial filter, 2670 kg/m3 density</div><div>- FVDBGL2500M_267&nbsp;&nbsp;Eotvos&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First vertical derivative of full Bouguer gravity, 2500m half-wavelength spatial filter, 2670 kg/m3 density</div><div>- GRVISO2500M_267&nbsp;&nbsp;&nbsp;µms-2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Isostatic residual gravity, 2500m half-wavelength spatial filter, 2670 kg/m3 density</div><div>- FVDISO2500M_267&nbsp;&nbsp;&nbsp;Eotvos&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First vertical derivative of isostatic residual gravity, 2500m half-wavelength spatial filter, 2670 kg/m3 density</div><div>- BAREEARTH&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; m&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Bare earth terrain (above GDA94 Ellipsoid)</div><div><br></div><div><strong>3. Reports</strong> </div><div>- Delivery Information from contractor: Delivery Information - East Kimberley AIRGrav.pdf</div><div>- Final technical report from the contractor: East Kimberley 2016 TR-842-002.pdf </div><div>- Quality control report: East Kimberley 2016 QC report.pdf </div><div><br></div>