From 1 - 10 / 172
  • Geoscience Australia has compiled U-Pb datasets from disparate sources into a single, standardised and publicly-available U–Pb geochronology compilation for all Australia. The national maps presented in this poster expand upon the data coverage previously compiled by Anderson et al. (2017) and Jones et al. (2018), which covered northern and western Australia only. This extension of a national coverage has been achieved through the development of Geoscience Australia’s Interpreted Ages database. In this database, there are now >4000 U–Pb sample points compiled from across Australia, with significant datasets to come from the southern Australia regions. These will be available to the public in the coming months through the Exploring for the Future Data Discovery Portal (eftf.ga.gov.au).

  • <p>On 5 November 2019, Geoscience Australia presented a Targeted Side Event at the GEO Week 2019 Ministerial Summit in Canberra (http://www.earthobservations.org/geoweek19.php?t=home). GEO, the Group on Earth Observations, is a global intergovernmental partnership of 105 Member governments, 127 Participating Organizations and thousands of individuals and businesses that strives to improve the availability, access and use of Earth observations for a more sustainable planet. <p>The theme of the Targeted Side Event was as follows. <p>Strong, resilient and sustainable communities have jobs, homes, clean water, feel safe and are well connected locally, nationally and internationally. Government, business, industry and community decision makers can progress economic, social and cultural development using new, free digital information and mapping tools. Smart, fast and trusted decisions made using digital information and digital mapping can be used for any sized community, remote, rural, city, national. Sustainable development, responsible growth through a reform and transform approach can unlock new resource opportunities and respond to the economic and social challenges faced by many countries. Presented is a new digital mapping decision making tool that integrates resources: minerals, energy and water, within a social, economic and environment frame. <p>Addressing social licence and environmental sustainability is becoming increasingly important to ensuring the future economic development of Earth resources. The challenge for geoscientists is to create tools using data integrated from multiple disciplines to deliver insight into the complex interactions between diverse Earth systems and human society. These tools will enable specialists and non-specialists in communities, government and industry to make informed decisions for a sustainable future.

  • Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%. <b>Citation:</b> Wilford, J. and Roberts, D., 2020. Enhanced barest earth Landsat imagery for soil and lithological modelling. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <b>Please Note:</b> The data related to this Abstract can be obtained by contacting <a href = "mailto: clientservices@ga.gov.au">Manager Client Services</a> and quoting Catalogue number 144231. The data are arranged by regions, so please download the Data Description document found in the Downloads tab to determine your area of interest. Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%.

  • Constraints on the morphology of the Moho are essential to establish reliable models of the subsurface and infer the evolution of the Australian crust. Reliable information on crustal thickness variations is important for thermal modelling and structural mapping, for both energy and mineral system studies. Here, we combine information from both passive seismic deployments and full-crustal reflection seismic profiling to produce a new representation of the character of the Moho in northern Australia. Data coverage has been dramatically improved by investments, under the Exploring for the Future program, in new deployments of passive seismic instrumentation and expansion of the network of reflection seismic profiles in the South Nicholson and Barkly regions. Using a new approach to combining results from different classes of seismic analysis, different spatial sampling associated with the various types of data have been taken into account. The resulting Moho surface reveals small-scale features not seen in previous models. New data reveal that some Moho discontinuities are clearly associated with known structures such as the Willowra Suture. Similar ~100 km wavelength undulations are visible in areas under cover that may indicate the presence of unknown major structures. Significant base metal mineral deposits appear to be localised along the edges of thicker crustal block. <b>Citation:</b> Gorbatov, A., Medlin, A., Kennett, B.L.N., Doublier, M.P., Czarnota, K., Fomin, T. and Henson, P., 2020. Moho variations in northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Tasselled Cap Wetness (TCW) percentage exceedance composite represents the behaviour of water in the landscape, as defined by the presence of water, moist soil or wet vegetation at each pixel through time. The summary shows the percentage of observed scenes where the Wetness layer of the Tasselled Cap transform is above the threshold, i.e. where each pixel has been observed as ‘wet’. Areas that retain surface water or wetness in the landscape during the dry season are potential areas of groundwater discharge and associated GDEs. The TCW exceedance composite was classified into percentage intervals to distinguish areas that were wet for different proportions of time during the 2013 dry season. Areas depicted in the dataset have been exaggerated to enable visibility.

  • The Tasselled Cap Wetness (TCW) percentage exceedance composite represents the behaviour of water in the landscape, as defined by the presence of water, moist soil or wet vegetation at each pixel through time. The summary shows the percentage of observed scenes where the Wetness layer of the Tasselled Cap transform is above the threshold, i.e. where each pixel has been observed as ‘wet’. Areas that retain surface water or wetness in the landscape during the dry season are potential areas of groundwater discharge and associated GDEs. The TCW exceedance composite was classified into percentage intervals to distinguish areas that were wet for different proportions of time during the 2013 dry season. Areas depicted in the dataset have been exaggerated to enable visibility.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.

  • The Exploring for the Future (EFTF) Program is a multiyear, federally funded initiative to better characterise the mineral, energy and groundwater resource potential across Australia. As part of this initiative, this data record presents mineral fluid inclusion data from two sample from the South Nicholson region. The South Nicholson region straddles north-eastern Northern Territory and north-western Queensland, and prior to the EFTF program, arguably represented one of the least geologically understood regions of Proterozoic northern Australia. The South Nicholson region is situated between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland, both with demonstrated hydrocarbon and base-metal potential. These new fluid inclusion data provide information on sedimentary and volcanic rocks in the South Nicholson region that complement other components of the EFTF program, including the South Nicholson Basin and Barkly seismic surveys, comprehensive geochronology and geochemical programs, hydrocarbon prospectivity studies and other extensive regional geophysical surveys to better understand the geological evolution and basin architecture of northern Australia. The primary objective of the program is to facilitate identification of areas of unrecognised resource potential and prospectivity and encourage and stimulate ‘greenfield’ resource exploration. This record presents new fluid inclusion data from two outcrop samples: a) siliceous hydrothermal ‘white smoker’ pipes within the ca. 1660–1630 Ma Buddycurrawa Volcanics (Benmara Group, Benmara region) and b) feeder veinlets of a manganese oxide occurrence in the Carrara Range and hosted within the late Paleoproterozoic Plain Creek Formation (McNamara Group). Both samples are from the MOUNT DRUMMOND 1:250 000 map-sheet, north-eastern Northern Territory and were collected as part of EFTF helicopter-based field operations and ground mapping during May 2018.

  • <p>The East Tennant Gravity Survey P201901 is a gravity survey funded under Geoscience Australia’s (GA) Exploring for the Future program. Atlas Geophysics was commissioned by GA to support the Tennant Creek-Mt Isa drilling program to be undertaken at a later date. <p>The survey infills existing 4km gravity coverage to 2km coverage. The data package consist of 2,552 gravity stations as a point located dataset and grids of the newly acquired gravity data. <p>This survey is the first of two surveys. The second survey is the South West McArthur, Barkly Gravity Survey (eCat number 132968). Together the two surveys can be called the Tennant Creek Mount Isa (TISA) Gravity Surveys, P201901.