From 1 - 10 / 35
  • The Cooper Basin is an upper Carboniferous-Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; McKellar, 2013; Carr et al., 2016; Hall et al., 2015a). The basin is Australia's premier onshore hydrocarbon producing province and is nationally significant in providing gas to the eastern Australian gas market. The basin also hosts a range of unconventional gas play types within the Permian Gidgealpa Group, including basin-centred gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee formations, the Murteree and Roseneath shale gas plays and deep coal seam gas in the Weena Trough (e.g. Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). The principal source rocks for these plays are the Permian coals and coaly shales of the Gidgealpa Group (Boreham & Hill, 1998; Deighton et al., 2003; Hall et al., 2016a). Mapping the petroleum generation potential of these source rocks is critical for understanding the hydrocarbon prospectivity of the basin. Geoscience Australia, in conjunction with the Department of State Development, South Australia and the Geological Survey of Queensland, have recently released a series of studies reviewing the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks (Hall et al., 2015a; 2016a; 2016b, 2016c; 2016d). Petroleum systems models, incorporating new Cooper Basin kinetics (Mahlstedt et al., 2015), highlight the variability in burial, thermal and hydrocarbon generation histories for each source rock across the basin (Hall et al., 2016a). A Geoscience Australia record 'Cooper Basin Petroleum Systems Analysis: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3' providing full documentation of the model input data, workflow and results is currently in press. This work provides important insights into the hydrocarbon prospectivity of the basin (Hall et al., 2015b; Kuske et al., 2015). This product contains the working Cooper Basin Trinity-Genesis-KinEx petroleum systems model used to generate the results presented in these studies. This includes maps describing thickness, TOC and original HI for the following Permian source intervals: Toolachee Fm coals and coaly shales Daralingie Fm coals and coaly shales Roseneath Shale Epsilon Fm coals and coaly shales Murteree Shale Patchawarra Fm coals and coaly shales This model is designed for use as a regional scale hydrocarbon prospectivity screening tool. Model resolution is not high enough for this product to be used for sub-basin to prospect scale analysis, without further modification. However, the model provides a regional framework, into which more detailed prospect scale data may be embedded. The systematic workflow applied demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia's sedimentary basins.

  • <div>As part of Geoscience Australia’s Exploring for the Future program, the Curnamona Geochemistry project is producing a comprehensive compilation of geochemical data from the Broken Hill region, encompassing rock, regolith and groundwater. As part of these efforts, geochemical data has been compiled, cleaned and standardised to enable more seamless interpretation and exploration of geochemical anomalies. This project improves the quality, accessibility and volume of geochemical data across the Curnamona region and supports our ongoing efforts to define regional geochemical baselines.</div> This presentation was given to the 2022 Geological Survey of South Australia (GSSA) Discovery Day 1 December (https://www.energymining.sa.gov.au/home/events-and-initiatives/discovery-day)

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Galilee Basin region.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This web service summarises shale resources and coal seam gas prospectivity of the Eromanga Basin.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This web service summarises shale resources and coal seam gas prospectivity of the Eromanga Basin.

  • <div>We have investigated whether water-saturated residual oil zones (ROZs), sometimes associated with conventional Australian hydrocarbon plays, could provide a CO2 storage resource and supplement depleted field storage. Our petrophysical study demonstrates that ROZs occur in Australia’s hydrocarbon-rich regions, particularly in the Cooper-Eromanga Basin. ROZs with more than 10% residual oil saturation are uncommon, likely due to small original oil columns and lower residual saturations retained in sandstone reservoirs than in classic, carbonate-hosted North American ROZs. Extensive, reservoir-quality rock is found below the deepest occurring conventional oil in many of the fields in the Eromanga Basin, potentially offering significant CO2 storage capacity. Multiphase compositional flow modelling was used to estimate the CO2 storage efficiency of typical Australian ROZs. We developed a novel modelling methodology that first captures oil migration events leading to the formation of ROZs. Modelling CO2 storage over a 20-year injection period demonstrates that CO2-oil interactions increase the density and viscosity of CO2, enhancing CO2 sweep efficiency and lateral flow, improving storage efficiency. The extent of these effects depends on the quantity and spatial distribution of residual oil in place and the miscibility of CO2 at reservoir conditions. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Eromanga Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the Eromanga Basin.

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Australia's Great Artesian Basin (GAB) is a vital groundwater system extending across parts of Queensland, New South Wales, South Australia, and the Northern Territory, crucial for community water supplies, economic development, indigenous cultural values and groundwater dependent ecosystems. Managing GAB groundwater poses challenges due to the complex structure of the sedimentary basin, requiring a better understanding of aquifers, aquitards, and hydraulic connections at a whole GAB scale. Additionally, inconsistencies in nomenclature and subdivisions across the basin further complicate the definition and description of these strata. This study employs an integrated basin analysis workflow using new and existing data to create a 3D geological model tied to a consistent chronostratigraphic framework and State and Territory hydrostratigraphic classifications. The model refines the characteristics of 18 hydrogeological units, offering insights into aquifer boundaries and connectivity. This comprehensive approach enhances the 'whole-of-Basin' subsurface geological understanding, benefiting groundwater management, resource assessments, uncertainty risk assessment and environmental impact assessments across multiple jurisdictions and the broader resource sector (e.g., Carbone Capture and Storage and hydrogen).</div><div><br></div><div><strong>Citation: </strong>Rollet, N., Vizy, J., Norton, C.J., Hannaford, C., McPherson, A., Symington, N., Evans, T., Bradshaw, B., Szczepaniak, M., Bui Xuan Hy, A., Schoning, G. &amp; Keppel, M., 2024. Great Artesian Basin 3D chronostratigraphic model: providing new insights into hydrogeological variability and connectivity. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra, https://doi.org/10.26186/149235</div>

  • <div>The Pedirka, Simpson and western Eromanga basins in central Australia have undergone a chequered exploration history which has seen a total of only 42 wells drilled across a study area of ~210,000km2. Exploration initially focused on conventional hydrocarbons from the 1950s-1980s, before shifting towards coal seam gas (CSG) opportunities in the mid-2000s. Active petroleum systems have been proven in the region by a non-commercial oil discovery at Poolowanna 1 in 1977, and by several wells that showed evidence of residual oil columns. CSG exploration wells have confirmed the presence of thick, marginally mature coal intervals on the flanks of the basins, but are yet to evaluate the deeper troughs.</div><div>Geoscience Australia, the Northern Territory Geological Survey and the South Australian Department for Energy and Mining have been collaborating on the Australia’s Future Energy Resources project under the Australian government funded Exploring for the Future Program to undertake an assessment of the resource potential for conventional and unconventional hydrocarbons, and the geological carbon and storage (GCS) potential of the greater Pedirka region. </div><div>The project applied a play-based exploration approach to qualitatively assess the resource potential of the region. The Carboniferous to Cretaceous stratigraphic interval was divided into 14 plays which were evaluated for the presence of sediment-hosted energy resources through post-drill analysis, gross depositional environment mapping and common risk segment mapping. The analysis identified energy resources and GCS potential across multiple plays and locations within the study area. These results demonstrate, that while the region is underexplored, it should not be overlooked by future exploration activities.</div> Published in The APPEA Journal 2023. <b>Citation:</b> Iwanec Jeremy, Strong Paul, Bernecker Tom (2023) Underexplored but not forgotten: assessing the energy resources potential of the greater Pedirka Basin region through play-based mapping. <i>The APPEA Journal</i><b> 63</b>, S251-S256. https://doi.org/10.1071/AJ22150

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the Eromanga Basin. The unconventional hydrocarbon assessment for the Eromanga Basin includes shale resources (shale oil and gas) and coal seam gas for 6 of the 9 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023a, 2023b). Tight gas was not assessed due to play intervals lying above the zone of significant overpressure zone (2,800 m below ground level) in the Cooper-Eromanga region. The assessment captures data from well completion reports and government data sources to inform the components required for unconventional hydrocarbons to be present in the Eromanga Basin. The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), the Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), the Petroleum Exploration and Production System of South Australia (PEPS, 2021) and Draper 2002. These datasets were used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide will outline the play-based workflow for assessing unconventional hydrocarbon prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data are integrated and merged to show the relative assessment of unconventional prospectivity across the basin, at both play interval and basin scale. As an example of assessments contained within the dataset, this data guide showcases the prospectivity of shale resources in the Birkhead Play interval.