From 1 - 10 / 44
  • Initial 2D seismic survey using mini-vibroseis with high frequency band 10 - 150Hz. This seismic survey is part of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) projects.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir).

  • Currently there is no uniform methodology to estimate geological CO2 storage capacity. Each country or organization uses its own evaluation and estimation method. During 2011-2012, the International Energy Agency has convened a process among national geological survey organizations to recommend a common estimation method for countries to use. Such a method should describe a typical process for developing assessments of CO2 storage resources; recommend a sound methodology for arriving at a jurisdictional or national-scale CO2 storage resource assessment that could be applied globally; and recommend a way forward to bridge the gap between such a resource and a policy-makers aspiration to understand what proportion of the resource can be relied on and is likely to be technically accessible at any particular cost. This report will outline a 'roadmap' to address these recommendations in a way that jurisdictions can use extant methodologies or craft their own to assess their CO2 storage endowment in a manner consistent with other jurisdictions. In this way they may be able to fully utilize their endowment as well as make a contribution to the potential realization of a worldwide estimate of storage resource.

  • The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. The survey mapped two targeted areas of the Petrel-Sub-basin located within the Ptrl-01 2009 Greenhouse Gas acreage release area (now closed). Data acquired onboard the AIMS research vessel, Solander included multibeam sonar bathymetry (471.2 km2 in Area 1 and 181.1 km2 in Area 2) to enable geomorphic mapping, and multi-channel sub-bottom profiles (558 line-kilometres in Area 1 and 97 line-kilometres in Area 2) to investigate possible fluid pathways in the shallow subsurface geology. Sampling sites covering a range of seabed features were identified from the preliminary analysis of multibeam bathymetry and shallow seismic reflection data. Sampling equipment deployed during the survey included surface sediment grabs, vibrocores, towed underwater video, conductivity-temperature-depth (CTD) profilers and ocean moorings. A total of 14 stations were examined in Area 1 (the priority study area) and one station in Area 2. This report provides a comprehensive overview of the survey activities and preliminary results from survey SOL5463. Detailed analyses and interpretation of the data acquired during the survey will be integrated with new and existing seismic data. This new information will support the regional assessment of CO2 storage prospectivity in the Petrel Sub-basin and contribute to the nation's knowledge of its marine environmental assets.

  • This is a collection of conference program and abstracts presented at AOGC 2010, Canberra.

  • Between 3 May 2012 to 24 June 2012 Geoscience Australia undertook two major surveys off the coast of the Northern Territory in the Petrel Sub-Basin. The data acquisition was funded through the National Low Emissions Coal Initiative (NLECI) and the Petrel Sub-basin was selected in particular as it has been identified as a prospective area for CO2 storage. One of these surveys, GA336 acquired 4091 kilometres of 2D seismic reflection data. Following on from the completion of the seismic processing of this data was further investigative work investigative work such as this analysis. Four prime lines, GA336-107, 110, 205 and 207 along with the well logs, Flat-Top1, Petrel 1A and Petrel 4 were selected for further 2D Simultaneous Inversion and Rock Physics Modelling. Previous Pre Stack Depth Migration had been undertaken on these lines and the PSDM Angle Stacks were imported along with the relevant horizon interpretation into the Jason integration algorithms.

  • The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. Underwater video footage and still photographic images (12 megapixel resolution) from towed-video were acquired from 11 stations. The quality of imagery varies among transects and some still images were not of suitable quality for analysis. No still images are available for stations 2, 4 and 7 due to system malfunction. Video and still image files and associated parent folders are named by station number, gear code (CAM = underwater camera system) and then the deployment number. For example 'STN08CAM06' would represent a video transect from Station 08 that was the 6th video transect of the survey. Please note that the Ultra-short Baseline (USBL) acoustic tracking system used to track the towed-camera system failed early in the survey; hence geo-location of video transects and stills could only be linked to the R.V. Solander's ship navigation.

  • There remains considerable uncertainty regarding the location, timing and availability of CO2 storage sites in both southeast Queensland and New South Wales. In New South Wales, the main issues relate to the lack of recent or reliable valid geological information that would permit a complete and comprehensive evaluation. Some sedimentary basins appear to contain potential storage reservoirs although they have low permeabilities, and are therefore likely to have low injection rates. In southeast Queensland, recent work has indicated that in some parts of the Bowen and Surat basins CO2 storage is likely to compete with other resources such as groundwater and hydrocarbons. However, current research on the potential storage in deeper saline formations in the southern and western Bowen Basin has provided encouraging results. Storage in deeper stratigraphic units in the central western part of the basin will rely on injection in low permeability formations, and more correlation work is required to define generally narrow storage targets. The Wunger Ridge, in the southern Bowen Basin, however, has promise with both significant storage potential and relatively low geological risk. One area in which there is some potential in both New South Wales and southeast Queensland is CO2 storage in coal seams, as close technical and economic relationships exist between coal bed methane (CBM) field development and operations and CO2 storage. Substantial collaborative research is still required in this area and is currently a focus of the CO2CRC activities

  • The CIAP project Best Available Information System (BAIS) uses a nested grid based on the ICSM map index series from 1:25:000 scale through to 1:1000000 scale tile indices by which statistics for consumed data services are generated and stored. This GIS data set is a key functional component of the BAIS.

  • We present a probabilistic tectonic hazard analysis of a site in the Otway Basin,Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking and associated fault displacements from natural tectonic processes that could adversely impact the storage process at the site. Three datasets are used to quantify the tectonic hazards at the site: (1) active faults; (2) historical seismicity, and; (3) GPS surface velocities. Our analysis of GPS data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a GPS-based source model for this Otway Basin model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters, and in the ground motion prediction. A new feature for seismic hazard modelling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in the Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. The annual probability for tectonic displacements of greater than or equal to 1m at the site is even lower, in the vicinity of 10-8-10-9/yr. The low hazard is consistent with the intraplate tectonic setting of the region, and unlikely to pose a significant hazard for CO2 containment and infrastructure.