From 1 - 10 / 21
  • This study assesses the petroleum potential of the Paleo–Mesoproterozoic Birrindudu Basin in the northwestern Northern Territory, which is one of several Proterozoic basins in northern Australia with the potential to host conventional and unconventional petroleum accumulations. Historical source rock geochemistry, porosity, and permeability data from the Birrindudu Basin are collated and interpreted; in addition, new fluid geochemistry is interpreted within the context of the greater McArthur Basin. The limited data available indicate that at least four formations have good or excellent present-day organic richness (>2 wt% TOC), and several sandstone and carbonate reservoirs have good porosity data. The calculated brittleness index of a number of organic-rich shales suggests that several are likely to be favourable for fracture stimulation and therefore might constitute good unconventional hydrocarbon targets. Four continent-scale petroleum supersystems are identified, two of which are described for the first time. These supersystems are an important tool in understanding the petroleum potential in frontier basins with limited data. Additionally, a number of basin-scale petroleum systems are potentially present within the basin successions; 14 possible conventional systems and 9 possible unconventional systems are documented. Petroleum play concepts are also described to assist with assessing the potential for conventional and unconventional hydrocarbon resources. The ultimate aim is to identify areas that can be targeting for precompetitive geoscience data acquisition, so as to reduce the exploration search space. Presented at Annual Geoscience Exploration Seminar (AGES) April 2021 (p115 - p130)

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from an mineral exploration drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory This ecat record releases the final report and raw data files (*.LAS) by FIT Schlumberger. Company reference number FI230005a.

  • Seismic reflection mapping, geochemical analyses and petroleum systems modelling have increased our understanding of the highly prospective Mesoproterozoic and Paleoproterozoic source rocks across northern Australia, expanding the repertoire of exploration targets currently being exploited in Proterozoic petroleum systems. Data collected during the Exploring for the Future program have enabled us to redefine and increase the extent of regional petroleum systems, which will encourage additional interest and exploration activity in frontier regions. Here, we present a review of the Paleoproterozoic McArthur and Mesoproterozoic Urapungan petroleum supersystems, and the most up-to-date interpretation of burial and thermal history modelling in the greater McArthur Basin (including the Beetaloo Sub-basin), South Nicholson Basin and Isa Superbasin. We also present potential direct hydrocarbon indicators imaged in the 2017 South Nicholson Deep Crustal Seismic Survey that increase the attractiveness of this frontier region for hydrocarbon exploration activities. <b>Citation:</b> MacFarlane, S.K., Jarrett, A.J.M., Hall, L.S., Edwards, D., Palu, T.J., Close, D., Troup, A. and Henson, P., 2020. A regional perspective of the Paleo- and Mesoproterozoic petroleum systems of northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. The name ‘Birrindudu Basin’ was first introduced by Blake et al. (1975) and Sweet (1977) for a succession of clastic sedimentary rocks and carbonates, originally considered to be Paleoproterozoic to Neoproterozoic in age, and overlain by the Neoproterozoic Victoria Basin (Dunster et al., 2000), formerly known as the Victoria River Basin (see Sweet, 1977).

  • This Record presents new U Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from nine samples of sedimentary rocks collected from the Paleo- to Neoproterozoic Birrindudu and Victoria Basins, and underlying basement from the Victoria River catchment region, northwest Northern Territory. The newly acquired U–Pb SHRIMP data are discussed and integrated with existing detrital zircon geochronology to assist in the determination of maximum depositional ages and sedimentary provenance during the evolution of the Birrindudu and Victoria Basins, and contribute to lithostratigraphic correlations with other Proterozoic basins across northern Australia (e.g., the greater McArthur Basin and the Centralian Superbasin, Walter et al., 1995; Munson et al., 2013; Carson, 2013; Munson, 2016).

  • <div>This report presents seal capacity results of nine samples from the Birrindudu and McArthur basins, Northern Territory. Plugs were taken from depths of interest from drill holes Manbulloo S1, Broughton 1, Lamont Pass 3, 99VRNTGSDD1 and WLMB001B. These plugs were analysed via mercury injection capillary pressure testing. This work was conducted by CSIRO under contract to GA as part of the Exploring for the Future program (Officer–Musgrave–Birrindudu Module).</div>

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia (in collaboration with the Northern Territory Geological Survey) acquired around 700 line-kms of deep crustal reflection seismic data across northwest Northern Territory encompassing not only the frontier Birrindudu Basin but adjacent highly prospective regions, such as the Tanami. This ecat record releases the final survey route shapefiles, noting that some segments were not acquired due to site access restrictions. Seismic field data will be published in the near future release following completion of in-house QA/QC protocols

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the NTGS stratigraphic drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory. This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230005c.

  • <div>Geoscience Australia’s Exploring for the Future (EFTF) program is a multi-year Australian Government initiative, led by Geoscience Australia in partnership with State and Territory governments. The EFTF program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and information, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The EFTF program, which commenced in 2016, is an eight year, $225 million investment by the Australian Government.</div><div><br></div><div>This report presents the results of Grains with Oil Inclusions (GOI™) and Frequency of Oil Inclusions (FOI™) on rock samples from three selected drill holes across the Birrindudu Basin. Forty-five samples were obtained from drill holes WLMB001B, ANT003 and 99VRNTGSDD1. GOI™ and FOI™ was conducted on sedimentary and carbonate vein lithologies to investigate the potential presence of oil inclusions. Oil inclusions were recorded in samples taken from drill holes WLMB001B and ANT003, but not 99VRNTGSDD1. Analysis was undertaken by CSIRO under contract to Geoscience Australia.</div>

  • <div>The Birrindudu Basin is a region of focus for the second phase of the Geoscience Australia’s Exploring for the Future (EFTF) program (2020–2024). The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. Interpretation of industry seismic data indicates it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Furthermore, much of the age of the stratigraphy of the Birrindudu Basin, particularly the younger stratigraphic units, and regional correlations to the greater McArthur Basin remains provisional and speculative.&nbsp;</div><div><br></div><div>This report presents data from Rock-Eval pyrolysis analyses undertaken by Geoscience Australia on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity from 178 drill core samples from six drill holes intersecting units of the Birrindudu Basin including: 99VRNTGSDD1, 99VRNTGSDD2, WLMB001B, LBD2, LMDH4, and ANT003. </div><div><br></div>