Kinetics of hydrocarbon generation from the marine Ordovician Goldwyer Formation, Canning Basin, Western Australia
Pyrolysis and bulk kinetic studies were used to investigate the hydrocarbon generation potential and source rock facies variability of the marine organic-rich rocks from the Middle Ordovician (Darriwilian) Goldwyer Formation in the Canning Basin, Western Australia. Rock Eval pyrolysis results for the analysed immature to mid-mature calcareous mudstones imply that the upper Goldwyer Sequence I samples contain oil-prone Type I kerogen, while the lower Goldwyer Sequence III samples comprise on average Type II/III oil- and gas-prone kerogen. This is supported by the pyrolysis gas chromatography (Py-GC) results that show the presence of homogenous organofacies in the Goldwyer Sequence I that comprise aliphatic molecular signatures, possibly attributed to the selective preservation of the lipid fraction derived from <i>Gloeocapsomorpha prisca</i> (<i>G. prisca</i>). The heterogeneous organofacies of the Goldwyer Sequence III contains aromatic moieties that are present in similar abundance as the aliphatic compounds. The calcareous claystones of the Goldwyer Sequence I have the capacity to generate paraffinic oil with low wax contents, whereas those of the Goldwyer Sequence III have generative potential for paraffinic-naphthenic-aromatic (P-N-A) low wax oils and gas and condensate.
The temperature for hydrocarbon generation for the Type I kerogen, assuming a constant geological heating rate of 3<sup>o</sup>C/Ma, is estimated to occur over a narrow interval between 145<sup>o</sup>C and 170<sup>o</sup>C for the Goldwyer Sequence I samples. Generation from the Type II/III kerogen occurs from 100°C to 160°C in the Goldwyer Sequence III samples which are significantly thermally less stable than observed for the Goldwyer Sequence I samples. The kinetics results for both sequences were used in standard thermal and burial history plots to evaluate their transformation ratio and hydrocarbon generative potential. This provided a basin-specific kinetic input for burial history modelling and a better constraint for kerogen transformation and hydrocarbon generation on the Broome Platform.
<b>Citation:</b> Lukman M. Johnson, Reza Rezaee, Gregory C. Smith, Nicolaj Mahlstedt, Dianne S. Edwards, Ali Kadkhodaie, Hongyan Yu,; Kinetics of hydrocarbon generation from the marine Ordovician Goldwyer Formation, Canning Basin, Western Australia,<i> International Journal of Coal Geology</i>, Volume 232, <b>2020</b>, 103623, ISSN 0166-5162, https://doi.org/10.1016/j.coal.2020.103623.
Simple
Identification info
- Date (Creation)
- 2020-07-14
- Date (Publication)
- 2024-09-08T23:54:23
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/144066
Identifier
- Codespace
-
Digital Object Identifier
- Cited responsible party
-
Role Organisation / Individual Name Details Publisher Elsevier B.V.
External Contact Author Johnson, L.M.
External Contact Author Rezaee, R.
External Contact Author Smith, G.C.
External Contact Author Mahlstedt, N.
External Contact Author Edwards, D.S.
MEG Internal Contact Author Kadkhodaie, A.
External Contact Author Yu, H.
External Contact
- Name
-
International Journal of Coal Geology
- Issue identification
-
Volume 232, 1 December 2020
- Page
-
103623
- Purpose
-
Manuscript to be submitted to International Journal of Coal Geology
- Status
- Completed
- Point of contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Resource provider Minerals, Energy and Groundwater Division
External Contact Point of contact Edwards, D.
MEG Internal Contact
- Spatial representation type
- Topic category
-
- Geoscientific information
Extent
Temporal extent
- Time period
- 2020-02-17 2022-03-01
Extent
))
- Maintenance and update frequency
- As needed
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- theme.ANZRC Fields of Research.rdf
-
-
EARTH SCIENCES
-
- Theme
-
-
Compositional kinetics
-
- Place
-
-
Canning Basin
-
- Discipline
-
-
petroleum systems modelling input
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
All rights reserved
- Access constraints
- License
- Use constraints
- License
- Other constraints
-
© 2020 Elsevier B.V.
Resource constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice facsimile
- OnLine resource
-
Link to Journal
Link to Journal
- Distribution format
-
Resource lineage
- Statement
-
Publication of organic geochemistry data generated in Geoscience Australia's laboratory and with external collaborator Lukeman Johnson, Curtin University.
Metadata constraints
- Title
-
Australian Government Security Classification System
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/e6f2be2f-60fe-4a40-8831-c80e58bb4fe7
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Owner Edwards, D.
MEG Internal Contact Point of contact Edwards, D.
MEG Internal Contact
Type of resource
- Resource scope
- Document
- Name
-
Journal Article
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/144066
- Date info (Creation)
- 2019-04-08T01:55:29
- Date info (Revision)
- 2019-04-08T01:55:29
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- https://pid.geoscience.gov.au/dataset/ga/122551