• Product catalogue
  •  
  •  
  •  

The Effects of Spatial Reference Systems on the Predictive Accuracy of Spatial Interpolation Methods

Geoscience Australia has been deriving raster sediment datasets for the continental Australian Exclusive Economic Zone (AEEZ) using existing marine samples collected by Geoscience Australia and external organisations. Since seabed sediment data are collected at sparsely and unevenly distributed locations, spatial interpolation methods become essential tools for generating spatially continuous information. Previous studies have examined a number of factors that affect the performance of spatial interpolation methods. These factors include sample density, data variation, sampling design, spatial distribution of samples, data quality, correlation of primary and secondary variables, and interaction among some of these factors. Apart from these factors, a spatial reference system used to define sample locations is potentially another factor and is worth investigating.

In this study, we aim to examine the degree to which spatial reference systems can affect the predictive accuracy of spatial interpolation methods in predicting marine environmental variables in the continental AEEZ. Firstly, we reviewed spatial reference systems including geographic coordinate systems and projected coordinate systems/map projections, with particular attention paid to map projection classification, distortion and selection schemes; secondly, we selected eight systems that are suitable for the spatial prediction of marine environmental data in the continental AEEZ. These systems include two geographic coordinate systems (WGS84 and GDA94) and six map projections (Lambert Equal-area Azimuthal, Equidistant Azimuthal, Stereographic Conformal Azimuthal, Albers Equal-Area Conic, Equidistant Conic and Lambert Conformal Conic); thirdly, we applied two most commonly used spatial interpolation methods, i.e. inverse distance squared (IDS) and ordinary kriging (OK) to a marine dataset projected using the eight systems. The accuracy of the methods was assessed using leave-one-out cross validation in terms of their predictive errors and, visualization of prediction maps. The difference in the predictive errors between WGS84 and the map projections were compared using paired Mann-Whitney test for both IDW and OK. The data manipulation and modelling work were implemented in ArcGIS and R.

The result from this study confirms that the little shift caused by the tectonic movement between WGS84 and GDA94 does not affect the accuracy of the spatial interpolation methods examined (IDS and OK). With respect to whether the unit difference in geographical coordinates or distortions introduced by map projections has more effect on the performance of the spatial interpolation methods, the result shows that the accuracies of the spatial interpolation methods in predicting seabed sediment data in the SW region of AEEZ are similar and the differences are considered negligible, both in terms of predictive errors and prediction map visualisations. Among the six map projections, the slightly better prediction performance from Lambert Equal-Area Azimuthal and Equidistant Azimuthal projections for both IDS and OK indicates that Equal-Area and Equidistant projections with Azimuthal surfaces are more suitable than other projections for spatial predictions of seabed sediment data in the SW region of AEEZ.

The outcomes of this study have significant implications for spatial predictions in environmental science. Future spatial prediction work using a data density greater than that in this study may use data based on WGS84 directly and may not have to project the data using certain spatial reference systems. The findings are applicable to spatial predictions of both marine and terrestrial environmental variables.

Simple

Identification info

Date (Publication)
2014-01-01T00:00:00
Edition date
2013-01-01T00:00:00
Citation identifier
Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/76314

Citation identifier
Digital Object Identifier/http://dx.doi.org/10.11636/Record.2014.001

Cited responsible party
Role Organisation / Individual Name Details
Publisher

Geoscience Australia

Canberra
Author

Jiang, W.

1
Author

Li, J.

2
Name

Record

Issue identification

2014/001

Point of contact
Role Organisation / Individual Name Details
Custodian

EGD

Owner

Commonwealth of Australia (Geoscience Australia)

Custodian

Commonwealth of Australia (Geoscience Australia)

Voice
Topic category
  • Geoscientific information

Extent

N
S
E
W


Maintenance and update frequency
Unknown

Resource format

Title

Product data repository: Various Formats

Website

Data Store directory containing the digital product files

Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes

Keywords
  • GA Publication

  • Record

Theme
  • marine

Keywords
  • AU

Australian and New Zealand Standard Research Classification (ANZSRC)
  • Earth Sciences

Keywords
  • Published_External

Resource constraints

Title

Creative Commons Attribution 4.0 International Licence

Alternate title

CC-BY

Edition

4.0

Website

http://creativecommons.org/licenses/

Access constraints
License
Use constraints
License

Resource constraints

Title

Australian Government Security ClassificationSystem

Edition date
2018-11-01T00:00:00
Website

https://www.protectivesecurity.gov.au/Pages/default.aspx

Classification
Unclassified
Language
English
Character encoding
UTF8

Distribution Information

Distributor contact
Role Organisation / Individual Name Details
Distributor

Commonwealth of Australia (Geoscience Australia)

Voice
OnLine resource

Download the Record (docx)

Download the Record (docx)

Distribution format
  • docx

OnLine resource

Download the Record (pdf)

Download the Record (pdf)

Distribution format
  • pdf

Resource lineage

Statement

Unknown

Hierarchy level
Non geographic dataset
Other

GA Publication

Description

Source data not available.

Metadata constraints

Title

Australian Government Security ClassificationSystem

Edition date
2018-11-01T00:00:00
Website

https://www.protectivesecurity.gov.au/Pages/default.aspx

Classification
Unclassified

Metadata

Metadata identifier
urn:uuid/ddc00860-622a-5a26-e044-00144fdd4fa6

Title

GeoNetwork UUID

Language
English
Character encoding
UTF8
Contact
Role Organisation / Individual Name Details
Point of contact

Commonwealth of Australia (Geoscience Australia)

Voice

Type of resource

Resource scope
Document
Name

GA Record

Alternative metadata reference

Title

Geoscience Australia - short identifier for metadata record with

uuid

Citation identifier
eCatId/76314

Metadata linkage

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/ddc00860-622a-5a26-e044-00144fdd4fa6

Date info (Revision)
2018-04-20T06:09:43
Date info (Creation)
2013-05-28T00:00:00

Metadata standard

Title

AU/NZS ISO 19115-1:2014

Metadata standard

Title

ISO 19115-1:2014

Metadata standard

Title

ISO 19115-3

Title

Geoscience Australia Community Metadata Profile of ISO 19115-1:2014

Edition

Version 2.0, September 2018

Citation identifier
https://pid.geoscience.gov.au/dataset/ga/122551

 
 

Spatial extent

N
S
E
W


Keywords

marine

Provided by

Access to the portal
Read here the full details and access to the data.

Associated resources

Not available


  •  
  •  
  •