The Effects of Spatial Reference Systems on the Predictive Accuracy of Spatial Interpolation Methods
Geoscience Australia has been deriving raster sediment datasets for the continental Australian Exclusive Economic Zone (AEEZ) using existing marine samples collected by Geoscience Australia and external organisations. Since seabed sediment data are collected at sparsely and unevenly distributed locations, spatial interpolation methods become essential tools for generating spatially continuous information. Previous studies have examined a number of factors that affect the performance of spatial interpolation methods. These factors include sample density, data variation, sampling design, spatial distribution of samples, data quality, correlation of primary and secondary variables, and interaction among some of these factors. Apart from these factors, a spatial reference system used to define sample locations is potentially another factor and is worth investigating.
In this study, we aim to examine the degree to which spatial reference systems can affect the predictive accuracy of spatial interpolation methods in predicting marine environmental variables in the continental AEEZ. Firstly, we reviewed spatial reference systems including geographic coordinate systems and projected coordinate systems/map projections, with particular attention paid to map projection classification, distortion and selection schemes; secondly, we selected eight systems that are suitable for the spatial prediction of marine environmental data in the continental AEEZ. These systems include two geographic coordinate systems (WGS84 and GDA94) and six map projections (Lambert Equal-area Azimuthal, Equidistant Azimuthal, Stereographic Conformal Azimuthal, Albers Equal-Area Conic, Equidistant Conic and Lambert Conformal Conic); thirdly, we applied two most commonly used spatial interpolation methods, i.e. inverse distance squared (IDS) and ordinary kriging (OK) to a marine dataset projected using the eight systems. The accuracy of the methods was assessed using leave-one-out cross validation in terms of their predictive errors and, visualization of prediction maps. The difference in the predictive errors between WGS84 and the map projections were compared using paired Mann-Whitney test for both IDW and OK. The data manipulation and modelling work were implemented in ArcGIS and R.
The result from this study confirms that the little shift caused by the tectonic movement between WGS84 and GDA94 does not affect the accuracy of the spatial interpolation methods examined (IDS and OK). With respect to whether the unit difference in geographical coordinates or distortions introduced by map projections has more effect on the performance of the spatial interpolation methods, the result shows that the accuracies of the spatial interpolation methods in predicting seabed sediment data in the SW region of AEEZ are similar and the differences are considered negligible, both in terms of predictive errors and prediction map visualisations. Among the six map projections, the slightly better prediction performance from Lambert Equal-Area Azimuthal and Equidistant Azimuthal projections for both IDS and OK indicates that Equal-Area and Equidistant projections with Azimuthal surfaces are more suitable than other projections for spatial predictions of seabed sediment data in the SW region of AEEZ.
The outcomes of this study have significant implications for spatial predictions in environmental science. Future spatial prediction work using a data density greater than that in this study may use data based on WGS84 directly and may not have to project the data using certain spatial reference systems. The findings are applicable to spatial predictions of both marine and terrestrial environmental variables.
Simple
Identification info
- Date (Publication)
- 2014-01-01T00:00:00
- Edition date
- 2013-01-01T00:00:00
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/76314
- Citation identifier
- Digital Object Identifier/http://dx.doi.org/10.11636/Record.2014.001
- Cited responsible party
-
Role Organisation / Individual Name Details Publisher Geoscience Australia
Canberra Author Jiang, W.
1 Author Li, J.
2
- Name
-
Record
- Issue identification
-
2014/001
- Point of contact
-
Role Organisation / Individual Name Details Custodian EGD
Owner Commonwealth of Australia (Geoscience Australia)
Custodian Commonwealth of Australia (Geoscience Australia)
Voice
- Topic category
-
- Geoscientific information
Extent
))
- Maintenance and update frequency
- Unknown
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- Keywords
-
-
GA Publication
-
Record
-
- Theme
-
-
marine
-
- Keywords
-
-
AU
-
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
-
Earth Sciences
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
Creative Commons Attribution 4.0 International Licence
- Alternate title
-
CC-BY
- Edition
-
4.0
- Access constraints
- License
- Use constraints
- License
Resource constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice
- OnLine resource
-
Download the Record (docx)
Download the Record (docx)
- Distribution format
-
-
docx
-
- OnLine resource
-
Download the Record (pdf)
Download the Record (pdf)
- Distribution format
-
-
pdf
-
Resource lineage
- Statement
-
Unknown
- Hierarchy level
- Non geographic dataset
- Other
-
GA Publication
- Description
-
Source data not available.
Metadata constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/ddc00860-622a-5a26-e044-00144fdd4fa6
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice
Type of resource
- Resource scope
- Document
- Name
-
GA Record
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/76314
- Date info (Revision)
- 2018-04-20T06:09:43
- Date info (Creation)
- 2013-05-28T00:00:00
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- https://pid.geoscience.gov.au/dataset/ga/122551