• Product catalogue
  •  
  •  
  •  

The Cooper Basin 3D map Version 2: Thermal Modelling and Temperature Uncertainty

A three-dimensional (3D) map of the Cooper Basin region has been produced from 3D inversions of Bouguer gravity data using geological data to constrain the inversions. The 3D map delineates regions of low density within the basement of the Cooper/Eromanga Basins that are inferred to be granitic bodies. This 3D data release constitutes the second version of the 3D map of the Cooper Basin region. It builds on Version 1 of the Cooper Basin Region Geological map, released in 2009.


The Cooper Basin region is coincident with a prominent geothermal anomaly and forms part of a broad area of anomalously high heat flow. High-heat-producing granites, including granodiorite of the Big Lake Suite (BLS) at the base of the Cooper and Eromanga Basins sequences combined with thick Cooper/Eromanga sedimentary sequences that provide a thermal blanketing effect, result in temperatures as high as 270° C at depths <5 km. The location and characteristics of other granitic bodies are poorly understood and accurately identifying them is an important first step towards future geothermal exploration in this region.


3D Bouguer gravity field inversion modelling was carried out using the UBC inversion software. An initial gravity inversion was performed using seismic horizons to constrain the 3D distribution of the Cooper/Eromanga Basin sediments. Densities, derived from seismic velocities from a refraction seismic survey in the region, were assigned to the Cooper/Eromanga sediments in order to constrain their gravity contribution. A series of Iso-surfaces were generated, enclosing low density lobes within the basement of the initial sediment-constrained inversion model. Gravity 'worms' were used to pick the iso-surfaces that approximate the lateral sub-sediment extent of potential granites within the basement. A series of subsequent granite-constrained inversions were generated by assigning different maximum cut-off depths to the lobes. The inversion model that produced the most 'neutral' result had a maximum cut-off depth of 10 km.


The 3D map was then used to predict temperatures throughout the volume of the map. Thermal properties were sourced from the literature and from direct measurements. Forward predictions of temperatures were carried out using the Simulator for HEat and MAss Transport (SHEMAT) software package. Thermal properties were iteratively updated until a satisfactory match was achieved between the model and temperature measurements. The resulting temperature distribution gives strongly elevated temperatures over the BLS, as well as broader regions of elevated temperature in the northwest of the study area toward Mt Isa, under the Adavale Basin in the north-east of the study area, and south-east of the BLS.


Uncertainty was analysed using a stochastic modelling technique. A sensitivity analysis was first performed to select the parameters which, when varied, had the greatest effect on the predicted temperatures. These parameters are: thermal conductivity of the basin sediments, heat production of the basement and granite units, and basal heat flux. Stochastic models were then run, giving the standard deviation of the temperature at each point in the model. The resulting standard deviation distribution shows that areas of highest predicted temperature are also areas of highest error. However, when the standard deviation values are converted to percentage error, a different pattern emerges: Highest error values are observed where the Cooper Basin sediments are thickest. Lower error values are observed over the BLS and in the southeast of the model area.

Simple

Identification info

Date (Publication)
2012-01-01T00:00:00
Citation identifier
Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/74291

Cited responsible party
Role Organisation / Individual Name Details
Publisher

Geoscience Australia

Canberra
Author

Meixner, A.J.

1
Author

Kirkby, A.L.

2
Author

Lescinsky, D.T.

3
Author

Horspool, N.

4
Name

Record

Issue identification

2012/060

Point of contact
Role Organisation / Individual Name Details
Custodian

ED

Owner

Commonwealth of Australia (Geoscience Australia)

Custodian

Commonwealth of Australia (Geoscience Australia)

Voice

Spatial resolution

Equivalent scale

Denominator
1000000
Topic category
  • Geoscientific information

Extent

N
S
E
W


Maintenance and update frequency
Not planned

Resource format

Title

Product data repository: Various Formats

Website

Data Store directory containing the digital product files

Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes

Keywords
  • GA Publication

  • Record

Theme
  • geothermal

Theme
  • gravity

Theme
  • temperature

Australian and New Zealand Standard Research Classification (ANZSRC)
  • Earth Sciences

Keywords
  • Published_External

Resource constraints

Title

Creative Commons Attribution 4.0 International Licence

Alternate title

CC-BY

Edition

4.0

Website

http://creativecommons.org/licenses/

Access constraints
License
Use constraints
License

Resource constraints

Title

Australian Government Security ClassificationSystem

Edition date
2018-11-01T00:00:00
Website

https://www.protectivesecurity.gov.au/Pages/default.aspx

Classification
Unclassified
Language
English
Character encoding
UTF8

Distribution Information

Distributor contact
Role Organisation / Individual Name Details
Distributor

Commonwealth of Australia (Geoscience Australia)

Voice
OnLine resource

Download the Record (pdf)

Download the Record (pdf)

Distribution format
  • pdf

OnLine resource

File download

Appendix

Resource lineage

Statement

Unknown

Hierarchy level
Non geographic dataset
Other

GA Publication

Description

Source data not available.

Metadata constraints

Title

Australian Government Security ClassificationSystem

Edition date
2018-11-01T00:00:00
Website

https://www.protectivesecurity.gov.au/Pages/default.aspx

Classification
Unclassified

Metadata

Metadata identifier
urn:uuid/c2c6bbd3-fd68-194b-e044-00144fdd4fa6

Title

GeoNetwork UUID

Language
English
Character encoding
UTF8
Contact
Role Organisation / Individual Name Details
Point of contact

Commonwealth of Australia (Geoscience Australia)

Voice

Type of resource

Resource scope
Document
Name

GA Record

Alternative metadata reference

Title

Geoscience Australia - short identifier for metadata record with

uuid

Citation identifier
eCatId/74291

Metadata linkage

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/c2c6bbd3-fd68-194b-e044-00144fdd4fa6

Date info (Revision)
2018-04-20T06:11:34
Date info (Creation)
2012-06-19T00:00:00

Metadata standard

Title

AU/NZS ISO 19115-1:2014

Metadata standard

Title

ISO 19115-1:2014

Metadata standard

Title

ISO 19115-3

Title

Geoscience Australia Community Metadata Profile of ISO 19115-1:2014

Edition

Version 2.0, September 2018

Citation identifier
https://pid.geoscience.gov.au/dataset/ga/122551

 
 

Spatial extent

N
S
E
W


Keywords

geothermal gravity temperature

Provided by

Access to the portal
Read here the full details and access to the data.

Associated resources

Not available


  •  
  •  
  •