The role of soil flux and soil gas in the characterisation of a surface CO2 leak: A case study in Qinghai, China
Following the drilling of a shallow natural CO<sub>2</sub> reservoir at the Qinghai research site, west of Haidong, China, it was discovered that CO<sub>2</sub> was continuously leaking from the wellbore due to well-failure. The site has become a useful research facility in China for studying CO<sub>2</sub> leakage and monitoring technologies for application to geological storage sites of CO<sub>2</sub>. During an eight day period in 2014, soil gas and soil flux surveys were conducted to characterise the distribution, magnitude and likely source of the leaking CO<sub>2</sub> .
Two different sampling patterns were utilised during soil flux surveys. A regular sampling grid was used to spatially map out the two high-flux zones which were located 20–50 m away from the wellhead. An irregular sampling grid, with higher sampling density in the high-flux zones, allowed for more accurate mapping of the leak distribution and estimation of total field emission rate using cubic interpolation. The total CO<sub>2</sub> emission rate for the site was estimated at 649-1015 kgCO<sub>2</sub>/d and there appeared to be some degree of spatial correlation between observed CO<sub>2</sub> fluxes and elevated surface H<sub>2</sub>O fluxes.
Sixteen soil gas wells were installed across the field to test the real-time application of Romanak et al.’s (2012) process-based approach for soil gas measurements (using ratios of major soil gas components to identify the CO<sub>2</sub> source) using a portable multi-gas analyser. Results clearly identified CO<sub>2</sub> as being derived from one exogenous source, and are consistent with gas samples collected for laboratory analysis. Carbon-13 isotopes in the centre of each leak zone (−0.21‰ and −0.22‰) indicate the underlying CO<sub>2</sub> is likely sourced from the thermal decomposition of marine carbonates.
Surface soil mineralisation (predominantly calcite) can be used to infer prior distribution of the CO<sub>2</sub> hotspots and as a consequence highlighted plume migration of 20m in 11 years. The broadening of the affected area beyond the wellbore at the Qinghai research site markedly increases the area that needs surveying at sufficient density to detect a leak. This challenges the role of soil gas and soil flux in a CCS monitoring and verification program for leak detection, suggesting that these techniques may be better applied for characterising the source and emission rate of a CO<sub>2</sub> leak, respectively.
<b>Citation:</b> I.F. Schroder, H. Zhang, C. Zhang, A.J. Feitz, The role of soil flux and soil gas monitoring in the characterisation of a CO2 surface leak: A case study in Qinghai, China, International Journal of Greenhouse Gas Control, Volume 54, Part 1, 2016, Pages 84-95, ISSN 1750-5836, https://doi.org/10.1016/j.ijggc.2016.07.030.
Simple
Identification info
- Date (Publication)
- 2016-01-01T00:00:00
- Date (Revision)
- 2024-10-18T00:17:05
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/90040
- Cited responsible party
-
Role Organisation / Individual Name Details Author Schroder, I.F.
1 Author Zhang, H.
2 Author Zhang, C.
3 Author Feitz, A.J.
4 Publisher Elsevier Ltd
External Contact
- Point of contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Resource provider Minerals, Energy and Groundwater Division
External Contact Point of contact Schroder, I.
MEG Internal Contact
- Topic category
-
- Climatology, meteorology, atmosphere
Extent
Extent
))
- Maintenance and update frequency
- As needed
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- theme.ANZRC Fields of Research.rdf
-
-
EARTH SCIENCES
-
- Keywords
-
-
soil gas
-
- Keywords
-
-
soil flux
-
- Keywords
-
-
surface monitoring
-
- Keywords
-
-
CO2 leak
-
- Keywords
-
-
well failure
-
- Keywords
-
-
China
-
- Keywords
-
-
emissions
-
- Keywords
-
-
gas migration
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
Creative Commons Attribution 4.0 International Licence
- Alternate title
-
CC-BY
- Edition
-
4.0
- Access constraints
- License
- Use constraints
- License
- Other constraints
-
Crown Copyright © 2016
Resource constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice facsimile
- OnLine resource
-
Link to Journal
Link to Journal
- Distribution format
-
Resource lineage
- Statement
-
This publication was prepared in collaboration between Geoscience Australia and the Chinese Geological Survey under the auspices of the China Australia Geological Storage of CO2 (CAGS) Project
- Hierarchy level
- Non geographic dataset
- Other
-
External Publication
- Description
-
Source data not available.
Metadata constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/2b8c217a-cc85-7c6f-e053-10a3070ac576
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Point of contact Schroder, I.
MEG Internal Contact
Type of resource
- Resource scope
- Document
- Name
-
Journal Article
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/90040
- Date info (Revision)
- 2018-04-11T05:21:42
- Date info (Creation)
- 2016-02-12T00:00:00
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- https://pid.geoscience.gov.au/dataset/ga/122551