Open source flood simulation with a 2D discontinuous-elevation hydrodynamic model
A new finite volume algorithm to solve the two dimensional shallow water equations on an unstructured triangular mesh has been implemented in the open source ANUGA software, jointly developed by the Australian National University and Geoscience Australia. The algorithm allows for 'discontinuous-elevation', or 'jumps' in the bed profile between neighbouring cells. This has a number of benefits compared with previously implemented 'continuous-elevation'
approaches. Firstly it can preserve stationary states at wet-dry fronts, while also permitting simulation of very shallow frictionally dominated flow down slopes as occurs in direct-rainfall flood models. Additionally the use of discontinuous-elevation enables the sharp resolution of rapid changes in the topography associated with e.g. narrow rectangular drainage channels, or buildings, without the computational expense of a very fine mesh. The approach also supports a simple and computationally efficient treatment of river walls.
A number of benchmark tests are presented illustrating these features of the algorithm, along with its application to urban flood hazard simulation and comparison with field data.
Simple
Identification info
- Date (Publication)
- 2014-01-01T00:00:00
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/82337
- Cited responsible party
-
Role Organisation / Individual Name Details Author Davies, G.
Author Roberts, S.
- Point of contact
-
Role Organisation / Individual Name Details Custodian CSEMD
Owner Commonwealth of Australia (Geoscience Australia)
Custodian Commonwealth of Australia (Geoscience Australia)
Voice
- Topic category
-
- Geoscientific information
- Maintenance and update frequency
- As needed
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- Keywords
-
-
External Publication
-
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
-
Natural Hazards
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
Creative Commons Attribution 4.0 International Licence
- Alternate title
-
CC-BY
- Edition
-
4.0
- Access constraints
- License
- Use constraints
- License
Resource constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice
- OnLine resource
-
Link to Publication
Link to Publication
- Distribution format
-
-
html
-
Resource lineage
- Statement
-
Developed internally for conference
- Hierarchy level
- Non geographic dataset
- Other
-
External Publication
- Description
-
None
- Description
-
None
Metadata constraints
- Title
-
Australian Government Security ClassificationSystem
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/05812ba2-176a-3700-e054-00144fdd4fa6
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice
Type of resource
- Resource scope
- Document
- Name
-
GA publication: External publication
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/82337
- Date info (Revision)
- 2018-04-11T02:20:50
- Date info (Creation)
- 2014-10-16T00:00:00
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- https://pid.geoscience.gov.au/dataset/ga/122551