seismic sections
Type of resources
Keywords
Publication year
Scale
Topics
-
Interpretation of the Capricorn deep seismic reflection survey has provided images which allow us to examine the geodynamic relationships between the Pilbara Craton, Capricorn Orogen and Yilgarn Craton in Western Australia. Prior to the seismic survey, suture zones were proposed at the Talga Fault, between the Pilbara Craton and the Capricorn Orogen, and at the Errabiddy Shear Zone between the Yilgarn Craton and the Glenburgh Terrane, the southernmost component of the Capricorn Orogen. Our interpretation of the seismic lines indicates that there is a suture between the Pilbara Craton and the newly-recognised Bandee Seismic Province. Our interpretation also suggests that the Capricorn Orogen can be subdivided into at least two discrete crustal blocks, with the interpretation of a suture between them at the Lyons River Fault. Finally, the seismic interpretation has confirmed previous interpretations that the crustal architecture between the Narryer Terrane of the Yilgarn Craton and the Glenburgh Terrane consists of a south-dipping structure in the middle to lower crust, with the Errabiddy Shear Zone being an upper crustal thrust system where the Glenburgh Terrane has been thrust to the south over the Narryer Terrane.
-
Case Study: GeoFrame software helps Geoscience Australia provide quick access to 2D and 3D seismic survey data within newly released license/permit in support of successful Australian Acreage Release bidding rounds
-
The Palaeoproterozoic to Mesoproterozoic (<1850-<1490 Ma) southern McArthur Basin, Northern Territory, Australia, contains an unmetamorphosed, relatively undeformed succession of carbonate, siliciclastic and volcanic rocks that host the McArthur River (HYC) Zn-Pb-Ag deposit. Seismic reflection data obtained across this basin have the potential to revolutionise our understanding of the crustal architecture in which this deposit formed. These data were collected in late 2002 as part of a study to examine the fundamental basin architecture of the southern McArthur Basin, particularly the Batten Fault Zone, and the nature of the underlying basement. Geoscience Australia, the Northern Territory Geological Survey and the Predictive Mineral Discovery Cooperative Research Centre combined to acquire an east-west deep seismic reflection profile (line 02GA-BT1) approximately 110 km long, commencing 15 km west of Borroloola, and extending westwards along the Borroloola-Roper Bar road to the Bauhinia Downs region (Fig. 1). A short 17 km north-south cross line (02GA-BT2) was also acquired in collaboration with AngloAmerican. The seismic data were acquired through the Australian National Seismic Imaging Resource (ANSIR).
-
During May to October 2007 Geoscience Australia in collaboration with the Geological Survey of Queensland contracted Terrex Seismic to undertake the Mt Isa-Georgetown-Charters Towers Deep Seismic Reflection Survey. This survey acquired deep seismic reflection, gravity and magnetotelluric data along three traverses, 07GA-IG1, 07GA-IG2 and 07GA-GC1 (Figure 1). Funding for this survey was provided by Geoscience Australia's Onshore Energy Security Program and Queensland's Smart Mining - Future Prosperity Program, with the aims of the project to image from the eastern edge of the Mt Isa Province across the Georgetown Province and southeast through the Charters Towers region into the Drummond Basin (Figure 1). A fourth traverse (07GA-A1) was funded by AuScope, an initiative established under the National Collaborative Research Infrastructure Strategy to characterise the structure and evolution of the Australian continent. This line imaged from Mareeba to Mt Surprise across the Palmerville Fault (part of the Tasman Line). A total of 1387 km of 2D seismic reflection data were collected to 20 seconds two way travel time over the four lines. The nominal CDP coverage was 60 fold for line 07GA-IG1 and was increased to 75 fold for the remaining three lines. The survey commenced on 19 May 2007 and was completed on 7 October 2007.
-
The Australian Geological Survey Organisation (AGSO) through the partnership in the Australian Geodynamics Cooperative Research Centre (AGCRC) and Kalgoorlie Consolidated Gold Mines (KCGM) completed a joint research project to image the crustal structure of the Kalgoorlie region to develop a knowledge of the shallow and deep structures, tectonics, and fluid migration pathways. The Australian National Seismic Imaging Resource (ANSIR) was contracted to acquire the seismic data. The project's objectives were to obtain a better understanding of - sub-surface geology at a regional and mine scale - provide more information on regional crustal thickness and major features - stratigraphic and structural architecture of the mineral system - timing and locations of fluid migration pathways The seismic survey obtained 25 km of 10 fold CMP (common midpoint) regional reflection seismic data along two traverses and 8 km of 10 fold CMP high-resolution reflection seismic data along another two traverses. The data are of good quality and similar to both the 1991 and 1999 Eastern Goldfields reflection seismic data to the north and south of the survey area. The major outcome of imaging the four localities included mapping the Golden Mile and Bolder-Lefroy Faults, and the Boorara Shear at depth. This new information indicates the Golden Mile Mine was fed by a suite of relatively minor faults dangling off the major crustal-scale Boorara Shear. The dangling element relates to percolation theory. The detachment surface was imaged on all seismic traverses. Thrust duplexes were interpreted above the detachment surface.
-
A deep seismic reflection profile was acquired in South Australia and Victoria in November 2009 by Geoscience Australia with project partners AuScope, Geoscience Victoria, and Primary Industries and Resources South Australia (PIRSA). Along with previously acquired deep seismic reflection data, this 145 km long line completes a continuous east-west transect across the eastern Delamerian Fold Belt into the western Lachlan Fold Belt. The project aims included determining tectonic vergence during and after amalgamation of the Gondwana Supercontinent, understanding the transition from passive margin (Rodinia breakup) to convergent margin (Tasmanides orogenesis), and locating the so-called 'Tasman Line', the extent of Proterozoic continental crust.
-
As part of the Australian Government's Onshore Energy Security Program and the Queensland Government's Smart Mining and Smart Exploration initiatives, deep seismic reflection surveys were conducted in North Queensland to establish the architecture and geodynamic framework of this area in 2006 (Mt Isa Survey; also involving OZ Minerals and pmd*CRC) and 2007 (Cloncurry-Georgetown-Charters Towers Survey; also involving AuScope). Nearly 2300 line km of seismic data were acquired during these surveys. Geochemical, geochronological and complementary geophysical studies were undertaken in support of the seismic acquisition. Overviews of the geology of North Queensland and more detailed descriptions and the results of these surveys are presented in Hutton et al. (2009a, b), Korsch et al. (2009a), Withnall et al. (2009a, b), Henderson and Withnall (2009), and Henderson et al. (2009). The purpose here is to use the new geodynamic insights inferred from these data to provide comments on the large-scale geodynamic controls on energy and other mineral potential in North Queensland. This contribution draws on geodynamic and metallogenic overviews presented by Korsch et al. (2009b) and Huston et al. (2009)
-
No abstract available
-
This data set consists of processed seismic reflection data for line 01AGS-NY3 from the 2001 Northern Yilgarn seismic survey (L154), Western Australia. Line 01AGS-NY3 was located east of Lake Yeo within the Officer Basin and was acquired with vibratory sources at nominal 60 and 120 fold coverage by the Australian National Seismic Imaging Resource (ANSIR). The seismic data are provided as SEG-Y files of stack and migrated data to 4 seconds and 16 seconds two-way time, at a sample interval of 4 milliseconds. The CDP range is 2080 to 5507 with 15 metre CDP interval. SEG-Y header information, CDP coordinates as eastings and northings, and a pdf image of the migrated 16 second seismic section are also included. The line, migrated section images and further information on this data can be obtained from the <a href="http://www.pmdcrc.com.au" target="_blank">pmd*CRC</a> website.
-
Labuan Basin lies in deep water adjacent to the eastern Kerguelen Plateau. The basin is about 800 km long and 300 km wide and contains up to 4.5 km of sediment. A general lack of geophysical data and geological samples in this remote basin have inhibited understanding of its stratigraphy and crustal origin. Our new seismic stratigraphic interpretation of the Labuan Basin is based on deep multichennel seimic data collected by Geoscience Australia in 1997 during "Rig Seismic" surveys 179 and 180 intergrated with results of Ocean Drilling Program (ODP) Leg 183 (1998-1999)