From 1 - 10 / 264
  • The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediments. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity is poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows within the Upper Cretaceous section. Three wells have been drilled in the Sorell Basin, where minor oil and gas indications were recorded in Maastrichtian rocks near the base of Cape Sorell 1. Building on previous GA basin studies and using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data have been used to develop new interpretations of basement structure and sedimentary basin architecture. Analysis of potential field data, integrated with interpretation of 2D seismic data, has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, control the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. Regional-scale mapping of key sequence stratigraphic surfaces across the basins has resulted in the identification of distinct basin phases. Three periods of upper crustal extension can be identified. In the north, one phase of extension in the Early Cretaceous and two in the Late Cretaceous can be mapped. However, to the south, the Late Cretaceous extensional phase extends into the Paleocene, reflecting the diachronous break-up history. Extension was followed by thermal subsidence, and during the Eocene-Oligocene the basin was affected by several periods of compression, resulting in inversion and uplift. The new seismic interpretation shows that depositional sequences hosting active petroleum systems in the producing areas of the Otway Basin are also likely to be present in the southern Otway and Sorell basins. Petroleum systems modelling suggests that if the equivalent petroleum systems elements are present, then they are mature for oil and gas generation, with generation and expulsion occurring mainly in the Late Cretaceous in the southern Otway and northern Sorell basins and during the Paleocene in the Strahan Sub-basin (southern Sorell Basin). The integration of sequence stratigraphic interpretation of seismic data, regional structural analysis and petroleum systems modelling has resulted in a clearer understanding of the tectonostratigraphic evolution of this complex basin system. The results of this study provide new insights into the geological controls on the development of the basins and their petroleum prospectivity.

  • A recent Geoscience Australia sampling survey in the Bight Basin recovered hundreds of dredge samples of Early Cenomanian to Late Maastrichtian age. Given the location of these samples near the updip northern edge of the Ceduna Sub-basin, they are all immature for hydrocarbon generation with vitrinite reflectance - 0.5% RVmax, Tmax < 440oC and PI < 0.1. Excellent hydrocarbon generative potential is seen for marine, outer shelf, black shales and mudstones with TOC to 6.9% and HI up to 479 mg hydrocarbons/g TOC. These sediments are exclusively of Late Cenomanian-Early Turonian (C/T) in age. The high hydrocarbon potential of the C/T dredge samples is further supported by a dominance of the hydrogen-rich exinite maceral group (liptinite, lamalginite and telalginite macerals), where samples with the highest HI (> 200 mg hydrocarbons/g TOC) contain > 70% of the exinite maceral group. Pyrolysis-gas chromatography and pyrolysis-gas chromatography mass spectrometry of the C/T kerogens reveal moderate levels of sulphur compounds and the relative abundances of aliphatic and aromatic hydrocarbons predict the generation of a paraffinic-naphthenic-aromatic low wax oil in nature. Not enough oom for rest of Abstract

  • Advanced burial and thermal geo-history modelling was carried out using Fobos Pro modelling software for the first time in Australia without relying on default or inferred values (such as heat flow or geothermal gradient). Our methodology is a substantial extension to the conventional approach.

  • Legacy product - no abstract available

  • The Onshore Energy Security Program, funded by the Australian Government and conducted by Geoscience Australia, has acquired deep seismic reflection data, in conjunction with State and Territory geological surveys, across several frontier sedimentary basins to stimulate petroleum exploration in onshore Australia. Here, we present data from two seismic lines collected in South Australia and the Northern Territory. Seismic line 08GA-OM1 crossed the Carboniferous to Permian Arckaringa Basin is imaged as a series of depocentres forming the Phillipson and Penrhyn Troughs, with a much thinner succession connecting the depocentres, and extending well to the north. Seismic line 08GA-OM1 also crosses the Neoproterozoic to Devonian eastern Officer Basin. The basin is structurally complex in this area, being dominated by south-directed thrust faults and fault-related folds, providing potential for underthrust petroleum plays. Seismic line 08GA-OM1 also images the southern margin of the Amadeus Basin Seismic line 09GA-GA1 crossed the northeastern part of the Amadeus Basin and the complete width of the southern Georgina Basin in the Northern Territory. Structural and sequence stratigraphic interpretations of the seismic lines will be presented here, to be followed by an assessment of the petroleum potential of the basins. In the northeast, seismic line 09GA-GA1 crosses two parts of the basin separated by the Paleoproteroozic to Mesoproterozoic Casey Inlier. Seismic line 09GA-GA1 was positioned to cross that part of the southern Georgina Basin where the basin has a complex southern margin, with Neoproterozoic stratigraphy being thrust interleaved with basement rocks of the Arunta Region.

  • Abstract for initial submission; see Geocat 71429 for conference paper version

  • Extended abstract version of the abstract (Geocat#73747) submitted in March 2012 and accepted for an oral presentation at the symposium.

  • In 2006, deep seismic reflection profiling was carried out along six transects across the Mount Isa Inlier. The seismic lines were jointly funded by the Geological Survey of Queensland, Geoscience Australia, the Predictive Mineral Discovery Cooperative Research Centre and Zinifex Pty Ltd. (now Oz Minerals). In 2007, a further three seismic lines were collected by Geoscience Australia and the Geological Survey of Queensland from Cloncurry to south of Charters Towers via Croydon and Georgetown. This paper presents some highlights from the geological interpretations of the seismic lines.

  • The conjugate margins of Wilkes Land, Antarctica, and the Great Australian Bight (GAB) are amongst the least understood continental margins. Break up along the GAB-Wilkes Land part of the Australian-Antarctic margin commenced at approximately 83 Ma. Using recent stratigraphic interpretations developed for the GAB, we have established a sequence stratigraphy for the Wilkes Land margin that will, for the first time, allow for a unified study of the conjugate margins. By reconstructing the two margins to their positions prior to break up we were able to identify comparable packages on the Wilkes Land margin to those recognised on the GAB margin. Excluding the glacial sediments on the Antarctic margin, the sedimentary sequence along the Wilkes Land margin is very thin compared to the GAB margin, which has substantially more syn- and post-rift sediments. Despite the differences in thickness, the syn-rift sedimentary package on the Wilkes Land margin exhibits a similar style of extensional faulting and seismic character to its GAB margin counterpart. In comparison, post-rift sequences on the Wilkes Land margin are markedly different in geometry and seismic character from those found on the GAB margin. Isopach mapping shows substantial differences in the thickness of the post-breakup sediments, suggesting different sediment sources for the two margins. The Late Cretaceous Hammerhead Supersequence provides much of the post-rift thickness for the GAB margin as a result of large sediment influx into the basin. This supersequence is characterised by a thick progradational succession and was deposited in fluvio-deltaic and marine environments. The equivalent succession on the Wilkes Land margin has a different seismic character. It is thinner and aggradational, suggesting a distal marine environment of deposition.